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This final technical report summarizes the results of research supported by the Office of

Naval Research from October 1, 1995 to March 31, 1999, at the School of Physics,
Georgia Institute of Technology.

The research has encompassed a broader range of topics than was originally in the

original proposal. The topics investigated were as follows.

(a) Dynamics of coupled laser systems and arrays. The research focussed on
experiments and numerical modeling to explore tl;e dynamics of synchronization of two
and more coupled lasers. A new amplitude instability of coupled lasers was predicted and
then experimentally verified (Phys. Rev. E55, 3865 (1997)). This result is of significance
to the design and fabrication of coupled laser arrays and describes the fundamental
instabilities of amplitude and phase that may occur when lasers are éoupled together
through sharing of light between their cavities by evanescent leakége between waveguides.
We showed that there can be phase coherence even in regimes of amplitude instability and
chaos, a result that has been further investigated theoretical by Kurths and his group at

Potsdam.

We also investigated the nature of synchronization and intermittency of the oscillations of
coupled lasers in a collaboration with Peter Ashwin and his student John Terry, of the
mathematics department of the Univgrsity of Surrey (Phys. Rev. E 58, 7186 (1998)). This
investigation of blowout bifurcations in the dynamics of coupled lasers was extended to
studies of synchronization of a linear array of three coupled lasers (Phys. Rev. E 39, 4036
(1999)). This paper contained a first demonstration of generalized synchronization in this
linear three laser system, where the two outer lasers were identically synchronized, but the
middle laser was synchronized to the outer ones through a nonlinear functional relation.

This paper also contains the first demonstration of subharmonic generalized
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synchronization, where the oscillations of the central laser can occur at twice the average

frequency of the outer ones.

(b) Wave propagation in nonlinear media and four wave mixing in optical fibers. A
unique set of experiments was carried out to explore four wave mixing and its dynamical
evolution in single mode optical fibers. These experiments revealed the importance and
influence of spectral structure and phase fluctuations in the propagation of light at multiple
frequencies through optical fiber. The results of these experiments were presented ina
comprehensive paper (Phys. Rev. E57, 4757 (1998)). It was found that multiple wave
interactions are significantly influenced by fine spectral structure of the lasers as well as by
phase fluctuations of the light, and that these effects must be included in a model in order
to make accurate predictions of the dynamical evolution of the waves along the length of
fiber. The experiments consisted of hundreds of measurements at over fifty different
lengths of fiber in order to obtain measurements of the spectral evolution of the waves. A
specially built CCD camera developed for astronomical observations was used for these
measurement, that provided a 14 bit dynamic range for detection of the sidebands
generated by four wave mixing. The numerical investigations included integration of the
nonlinear Schroedinger equation and of coupled mode equations with stochastic noise

sources to simulate the phase fluctuations of the lasers.

© Transmission of polarized‘ light through a single mode fiber with random
fluctuations of birefringence. In the course of our work on propagation of light through
fibers we discovered that it is possible to convey linearly polarized ﬁght.through single
mode optical ﬁber§ that possess random birefringence fluctuations along their length. The
mathematical prediction of this possibility and its experimental demonstration were carried
out (Applied Optics 38, 3888 (1999)), and are a very practical application of an earlier

theory developed by us to describe the dynamics of a laser with nonlinear, birefringent
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elements in its cavity. These results were quite surprising to many members of the

nonlinear optics community.

(d) Nonlinear dynamics of erbium doped fiber lasers and application to
synchronization and communication. A large part of our time was involved in the
measurements of the fast dynamics of erbium doped fiber ring lasers (EDFRLs). These
lasers had previously been examined b many different groups, but their focus had been on
slow millisecond dynamics that originated in q-switching behavior due to the long decay
time of the upper lasing level of erbium for the 1.55 micron transition. We showéd that
there was chaotic dynamics at the nanosecond and faster time scales that could be
observed and that new models were required to describe these effects (Phys. Rev, ASS,
2376 (1997). The inclusion of stochastic effects was an important part of our model, and
the equations involved were delay-differential equations of a type developed earlier by
Ikeda to describe optical bistability. These equations provide a very good qualitative and
oﬁen quantitative description of the waveforms measured for different values of
parameters of operation of the laser system. The development of the Ikeda model to
include stochastic noise was carried out by us (Phys. Lett. A224, 51 (1996) and Phys.
Lett. A229, 362 (1997)). The influence of noise as a precursor to bifurcations in laser
systems described by these equations, predicted by us in these papers, has been observed

Mozdy and Pollock at Cornell on sodium chloride lasers (Phys. Lett.A249, 218 (1998)).

The application of EDFRLs to chaotic communication has been developed in a sequence
of experiments, including the first demonstration of optical chaotic communication
(Science 279, 1198 (1998)). The development of more sophisticated schemes has been
given in later papers (Phys. Rev. Lt;,tt. 81, 3547 (1998)) and in a paper accepted for
publication (Int. J. Bif. and Chaos, 1999) that is attached with this report. These papers
report optical communication with chaotic waveforms at hundreds of Mbits/sec,

demonstrate the possibility of multiplexing of channels at different wavelengths, and show
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that messages can be transmitted over tens of kilometers of fiber. “The role of polarization
variations in the light due to the fiber channel, and the design of a receiver to recover the
information suitable for different configurations of the transmitter system are all examined
in detail. Addition of a digital message to chaotic light, as well as direct modulation of the
chaotic light, are shown to be effective in these communication schemes. The influence
of parameter mismatches between transmitter and receiver is investigated, and it is shown
that mismatches from a few percent to as much as fifty percent are possible for different

parameters, in order to receive and decode the message carried by chaotic waveforms.

Our most recent studies have been concerned with the use of polarization dynamics of
EDFRLs for communication of information. As a first step, we developed a technique for
the measurement of fast polarization fluctuations in these lasers. Conventional
polarization analyzers operate at millisecond time scales or slower. We developed a high
speed fiber optic polarization analyzer that can measure polarization dynamics on
nanosecond time scales (Opt. Comm. 164, 107 (1999)). The polarization dynamics of a
chaotic erbium laser is displayed on a Poincare sphere. We discovered that there are
several modes of polarization switching that occur in EDFRLS, between both orthogonal
and non-orthogonal polarization states. It is now possible to measure the changes in

degree of polarization of the light as well as the time variation of the Stokes parameters.

The final set of measurements that are now being written up for submission involve
experiments that utilize the polarization of light for communication of information.
Previous methods that use polarization for communication use designated polarization
states to correspond to given symbols. We have used a dynamical encoding method in
which it is the changes in polarization state that are relevant, and that carry the —---

information. We have demonstrated such communication at a hundred Mbits.
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The research described here has initiated work on similar themes by researchers in UK.,
Spain, Germany, Australia and Japan. Different schemes and variations of our methods
are being developed by these researchers, and preliminary experiments of Gbit/sec
communication with chaotic waveforms have been submitted. We have many ideas that
we hope to investigate in the near future that concern the transmission and storage of
images as spatio-temporal chaotic waveforms, as well as the possibility of data
compression through optical implementations of iterated function systems. We believe
that nonlinear dynamics has much to contribute to practical applications in information
processing and communications, and regard the results reported here a first stage in the

development and demonstration of fundamental scientific concepts.
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Synchronization of chaos in an array of three lasers

John R. Terry,* K. Scott Thomburg, Jr., David J. DeShazer, Gregory D. VanWiggeren, Shiqun Zhu,! Peter Ashwin,*
and Rajarshi Roy
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 21 October 1998)

Synchronization of the chaotic intensity fluctuations of three modulated Nd:YAG lasers oriented in a linear
array with either a modulated pump or loss is investigated experimentally, numerically, and analytically.
Experimentally, synchronization is only seen between the two outer lasers, with little synchrony between outer
and inner lasers. Using a false nearest-neighbors method, we numerically estimate the experimental system
dynamics to be five dimensional, which is in good agreement with analytical results. Numerically, synchroni-
zation is only seen between the two outer lasers, which matches the experimental data well. Lack of synchrony
between outer and inner lasers, is explained analytically and then we numerically investigate loss of synchro-
nization of the outer two lasers, observing the occurrence of a blowout bifurcation. Finally, the effects of noise
and symmetry breaking are examined and discussed. [S1063-651X(99)03604-1]

PACS number(s): 05.45.xt, 42.50.Lc, 42.65.5f, 42.55.Ah

L. INTRODUCTION

Experimental and theoretical investigations of chaotic
synchronization in coupled nonlinear systems have attracted
much attention in recent years due to the possibility of prac-
tical applications of this fundamental phenomenon. Several
papers have studied the synchronization of chaotic signals in
the context of electronic circuits [1-3], secure communica-
tion [4-6], turbulence in fluids [7,8], chemical and biological
systems [9], and laser dynamics [10-14]. Winful and Rah-
man have numerically investigated the possibility of syn-
chronization of chaos in semiconductor laser arrays on a
panosecond time scale [10] and previously, we have also
performed experimental measurements and demonstrated
synchronization of two chaotic lasers [15} To our knowl-
edge, however, the experimental synchronization of chaos in
laser arrays with more than two lasers has yet to be reported.

In this paper, the synchronization, both experimentally
and numerically, of three coupled, chaotic, Nd:YAG (triva-
lent neodymium doped yttrium aluminum garnet) lasers in
the separate cases of pump and loss modulation is reported.
In a Linear array of three lasers, a high degree of synchroni-
zation between the two outer lasers is seen, while little if any
synchronization is observed between the outer and inner la-
sers. The experimental observations are in good agreement
with analytical results, which clearly explain the lack of syn-
chronization between outer and inner laser. Similar results
were seen by Winful and Rahman [10] in a numerical model
for three semiconductor lasers coupled in a linear array.

The numerical simulations show similar behavior in this
coupled linear array of three lasers to that seen in a system of
two coupled lasers [14] and we present numerical evidence
to suggest that synchronization between the two outer lasers
may be lost through a blowout bifurcation, where an attractor

*Present address: Department of Mathematics and Statistics, Uni-
versity of Surrey, Guildford GU2 5XH, UK.

tPresent address: School of Physics and Technology, Suzhou Uni-
versity, Suzhou, Jiangsu 215006, P.R.O.C.

1063-651X/99/59(4)/4036(8)/$15.00 PRE 59

contained within the synchronized submanifold loses its
transverse stability [16]. This indicates that as in the two
laser case, forced symmetry breaking is not necessary for
desynchronization of the two outer lasers to occur.

The rest of this paper is arranged as follows. In Sec. Il we
describe the experimental setup for a system of three
Nd:YAG lasers coupled in a linear array and explain the
techniques that we used in obtaining the experimental data.
Section I describes the equations we used to model the
laser system and investigates the occurrence of synchroniza-
tion between the two outer lasers and also the lack of syn-
chronization between the outer and inner laser. In Sec. IV,
we describe how the numerical simulations were performed
in the case of loss modulation and finally, in Sec. V, we
discuss our findings and consider the implications for cou-
pling large systems of lasers in a linear array.

IL EXPERIMENTAL SETUP

To study the dynamics of a pump or loss modulated three
laser array we use the experimental system as shown in Fig.
1. This setup consists of three equal intensity, parallel and

. laterally separated beams created by pumping a Nd:YAG

rod, 5 mm in both length and diameter in a plane parallel
cavity. Three Ar* pump beams (A =514.5 nm) are formed
by passing a single beam through a fan-out grating designed
to produce equal intensities for the zeroth- and first-order
beams, and negligible intensities elsewhere. The separation
and relative orientation of the three beams of interest are
controlled using a simple telescope. The pump beams, in the
end, are parallel and symmetric with respect to the axis of the
YAG crystal. The optical cavity consists of one high reflec-
tion coated end face of the rod and of an extemal planar
output coupler with 2% transmittance. The pump power for
the pump modulation case is approximately 5.8 W, and 5.0
W for the loss modulation case. For these parameters, the
relaxation oscillation frequency, ¥g, is of the order of 100
kHz. A thick etalon ensures single longitudinal mode opera-
tion. This etalon doubles as an intracavity acousto-optical
modulator (AOM) for the loss modulation case. Pump modu-

4036 ©1999 The American Physical Society
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FIG. 1. Experimental system for generating three laterally
coupled lasers in a Nd:YAG crystal and observing the synchroniza-
tion of chaotic laser intensities. A diffractive optic is used to split
the argon laser into three beams with almost equal inteasities. The
three beams are made parallel by a telescope; changing the magni-
fication of the telescope changes the separation d between each
laser. An Acousto-Optic Modulator (AOM) is placed in position (a)
in the case of loss modulation and in position (b), in the case of
pump modulation. The Nd:YAG crystal is coated for high reflectiv-
ity (HR) on ope side and antireflection coated (AR) on the other.
The output coupler (OC) is 2% transmissive; both mirrors are flat.
A charge-coupled device camera is used to measure the far-field
intensity pattern of the array, while the three photodetectors PD1,
PD2, and PD3 simultaneously measure each laser’s intensity dy-
namics, which are subsequently recorded on a digital sampling os-
cilloscope (DSO).

lation is attained using an AOM positioned before the fan-
out grating. :

Thermal lensing in the YAG rod, generated by Ar* pump
beams with waist radii ~20 xm allows the formation of
three separate and stable cavities [11]. The TEM,y infrared
laser beams generated in the YAG crystal have radii
~200 um. Radii are measured at 1/e? of the maximum
intensity of the Gaussian profile. The coupling between the
beams is determined by their nearest-neighbor separation,
which can be shifted by adjusting the grating and the tele-
scope lenses’ positions. The pump beam separations and pro-
files are measured directly using a rotating slit method. The
minimum value for nearest-neighbor separation used was
0.64 mm, for which there is no appreciable overlap of the
pump beams and coupling is entirely due to the spatial over-
lap of the infrared laser fields. The couplings and detunings
were chosen such that, in the absence of modulation, the
lasers exhibit an instability caused by the resonance of the
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FIG. 2. Experimental measurements of the relative intensities of

-three coupled lasers for pump beam separations d=0.975 mm and

modulation depth p;;=0.20 (for i=1,2,3). A high degree of inten-
sity synchronization is seen only between lasers 1 and 3.

phase dynamics with the relaxation oscillations as described,
for example, in [13].

The three infrared beams produced by the Nd:YAG laser
are separated using a sequence of non-polarizing cube beam
splitters and prisms. The intensity dynamics of the individual
lasers are recorded simultaneously using fast photodiodes
and a four-channel digital oscilloscope. A scanning Fabry-
Pérot interferometer is utilized to ensure that the individual
lasers have only a single longitudinal mode.

Experimental measurements for the pump modulated case
are displayed in Fig. 2 for nearest-neighbor separations of
approximately 0.975 mm. Chaotic synchronization between
the two outer lasers is clearly seen, whereas there is no ap-
parent synchronization between outer and inner lasers. In the
case of loss modulation they are displayed in Fig. 3 for
nearest-neighbor separations of approximately 0.64 mm. De-
spite additional noise present in the loss modulated experi-
mental setup, chaotic synchronization between lasers 1 and 3
is readily apparent. Again, pairing intensities of lasers 1 and

o v
stMWM%

WS w0

1
Tome po}

1200 1400 2606 e
Time s}

FIG. 3. Experimental measurements of the relative intensities of
three coupled lasers with loss modulation. Here the nearest peigh-
bor separation d=0.64 mm. Once again, a high degree of intensity
synchronization is seen only between lasers 1 and 3.
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FIG. 4. Power spectrum of three linearly coupled lasers, in the
case of loss modulation at a rate of 166 kHz. Here the pearest
neighbor separations are again 0.64 mm. Notice the peak in the
central beam close to 150 kHz, which is not present in the two outer
beams. However, the side beams display a peak at approximately 80
kHz of a greater intensity than the corresponding peak in the central
beam. The peak in all beams at 166 kHz corresponds to modulation
at this rate.

2, as well as lasers 3 and 2, show little synchrony.

It is interesting to note the harmonic relationships be-
tween the side lasers, 1 and 3, and the center beam, laser 2.
The intensity of laser 2 oscillates at a rate approaching twice
the frequency of the side beam oscillations. Figure 4 com-
pares the power spectrums of the individual beams. The
dominant peak of the central beam approaches 150 kHz
while the side beams display peaks at approximately 80 kHz.
The sharp spike at 166 kHz is due to modulation at this
frequency.

The intensity time series dynamics of all three lasers was
numerically estimated to be five dimensional (Fig. 5), using a
false nearest-neighbors method [17], with 25000 time units
considered. This result agrees with the dynamically invariant
state labeled amplitude antisynchronized in Table 1, corre-
sponding to a system with amplitude synchronization and
equal left and right detunings present.

ILL. EQUATIONS OF MOTION

The equations describing the time evolution of the slowly
varying, complex electric field amplitude E; and real gain G,
of laser i in an array of three spatially coupled, pump modu-
lated single-mode Class B lasers are similar to those of the

FIG. 5. Using the false nearest-neighbors method, we numeri-
cally estimate the dimensionality of the experimental system, using
measured time series of the intensity fluctuations. The 1% mark
suggests that the system is five dimensional, giving good agreement
between the experiments and the dimension of the amplitude anti-
synchronized subspace.

two-laser system [15] and are as follows:

O e 12 '[(Gr - (TE -~ kE;)+iwiEy,

aG, _
=7 @)= Gi—GilEs]),

dE
Ti-T3 =17."[(G,— &(T))E,— K(E\ + E3) ] +iwyEy, (1)

dG, _
=7 2(T)=G2=GalExY),

dE

ﬁ: 1-:'[(03— &(T))E;— kE;]+iw E;,
dG,

a1 - 77 (p3(T) ~ G3—~ G| Es[*).

“In these equations, 7, is the cavity round-trip time, 7; is the

fluorescence time of the upper lasing level of the Nd** ion,
and pAT)=poi+p1icos(QT), &T)=e€o;+ €;;008((27), and
w; are the modulated pump parameters, modulated losses,
and detunings (from a common cavity mode), respectively,

TABLE I. Dynamically invariant subspaces in Egs. (3). A list of symmetry forced invariant subspaces of
the equations for a system of three linearly coupled lasers. We have listed only those states that contained an
attractor in the numerical simulations. Note that other states exist but are not seen as attracting for the system.

Symmetry Representative point Dim. Name
Z,(HXZy(p)® (X4 oF 4 .X3,F,0,00,0) 4 synchronized
ZAOXZLy(p)"" (X4 F4 X2,F2,00,m,7) 4 antisynchronized
Z,(nf) (X4 F4.X3,F2,00,6,— @) 5 amplitude antisynchronized
Z,(p)® (X4 F4 ,X2,F3,X_ ,F_00) 6 phase synchronized
2107 (X4 Fy X9,Fy X F_,m,7) 6 phase antisynchronized
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of laser i. It is assumed that not both the pump and the loss
are modulated at the same time. In the Nd:YAG lasers con-
sidered in the experiments, the round-trip time of light in the
cavity 7, is 0.40—0.50 ns, while the decay time of the upper
lasing level 7, is ~240 us. {) is the modulation frequency
and is chosen to be near the relaxation frequency.

The lasers are coupled linecarly to one another with
strength x;;, assumed to be small. For laser beams of Gauss-
jan intensity profile and 1/e> beam radius wq the coupling
strength, as determined from overlap integral of the two elec-
tric fields i and j is defined as

—g\2
K= exp( - M) . )

2w§

The coupling strength is normalized such that x;;=1 if
d;—d;=0. As the coupling between lasers 1 and 3 is as-
sumed negligible, only nearest-neighbor coupling is consid-
ered in 1.

In the analysis that follows we only consider the case of
loss modulation, i.c., p;;=pj2=p13=0, but note that the
analysis is equally valid in the case of pump modulation
[18).

We first let E;=X;e'% where X is the amplitude and ¢;
the phase of laser i and rescale time, expressed in units of the
round-trip time of light around the cavity 7.. We subse-
quently introduce ®; = ¢,— ¢, and = @~ ¢; (and simi-
larly for A, and AR), so that we may rewrite Egs. (1) as the
follo»:ing system of ordinary differential equations defined
on R®,

dX, ‘
—r=lFi- a0 - kXzcos(Py),

dF)

= =YA-Fi-FiX}),
dx,
——==[F,— &(1)]X,~ (X cos(PL)+X3cos(Pg)),
dt ‘
dF
—=NA-F~FX)),
dax 2
— =1F3— (1) 1X;— kXycos(®4),
daF
-a;a=y(A—F3"F3X§),
dd, ((xz xl) . X3, )
_dt—=AL+K xl +X_z sm(d>;_)+ i';sm((pg) s
dd, ((x, x,) X, )
——=Ag+ || =+ ]sin(®g) + sin(PL) .
dt RT X xz x3 Sln( R) le( L)

The issue of synchronization between the two outer lasers
may be addressed by introducing the sum and difference of
these lasers and assuming that all three lasers are equally
detuned, ie., A, =Ax=0. Then, Xj3,=5(X;+X;3),X)3-

SYNCHRONIZATION OF CHAOS IN AN ARRAY OF ... 4039

=4(X;—X3),F13+=§(Fy+ F3),F13-=4(F,=F;), and
synchronization between the two outer lasers occurs when
X)3-=F3-=0. The transformed system is equivariant un-
der the action of the following symmetries:

f(x-f 7F+ ,x29F29x— ’F— vq)[,vq)k)
'=(X+ F4 ’XZ’FZv—x-’—F- ,q)k,d)’_),

corresponding to interchanging the two outer lasers,

ﬂ'(xi» !F-l- ’Xz,Fz,x- 95- ’q)L ’¢R)
=(x+ 0F+ -xz,Fzyx-—,F—,"‘pL-"q’n).

corresponding to conjugating the phases of the electric fields
of all three lasers.

There is also a parameter symmetry involving the cou-
pling parameter x that takes

(K’d)l. vd)k)—"(— K’¢L+ ”1¢R+ 7’)’

which adds 7 onto the phase of the middle laser while re-
versing the sign of &. It is interesting to note that all three
lasers are phase synchronized when x is negative, cofre-
sponding to @, = ®;=0. However, only the two outer lasers
are phase synchronized when x is positive and this is the
physically relevant situation since x is assumed positive in
some sense.

Owing to these symmetries, the dynamically invariant -
subspaces illustrated in Table I exist. Notice, in particular,
the five-dimensional subspace labeled amplitude antisyn-
chronized, corresponding to the case where the x symmetry
has been broken, via equal detuning of the two outer beams
from a common cavity mode. The dimensionality of the ex-
perimental system as calculated using the false nearest-
neighbor method gives good agreement with this state and
gives emphasis to our assumptions about the parameter re-
gimes considered.

Note that although there are several invariant subspaces
where the phases of all three lasers are locked, there are no
invariant subspaces forced by symmetry such that all the
amplitude and gains are equal, X, =X, and F,=F,. We
may examine this using two approaches; first by examining
the set of such points in the phase space and showing that it
is not invariant (cf. [19]) and second by reducing the system
of three lasers to one of two lasers with unequal coupling.

To this end, we define the manifold

Mp={(X1,Fy,X3,F3,X3,F3,®,,Dp) :
X,==X2,F|=F2 & ¢R=0 or 11’}

corresponding to perfect (anti)synchronization between la-
sers 1 and 2 in terms of the original variables.

A. Noninvariance of M,

We demonstrate that if x#0, any nonzero trajectory can
only be in M, instantaneously, by assuming that X, and X,
are nonzero and examining the evolution of the difference
x_=3(X,—X,) and sum x,= (X, +X,). Note that
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dx_ F|+F2 F|-F2
=3 *- 5 X+ e(t)x_+xx_cos P,

+%KX3OOS¢R.

If the system state lies on M), this means that x_=0 and
F=F,; so the trajectory at this point will have

dx_ - 1 " ®
at 2K 3&8( R)‘

Thus the trajectory must leave M), unless x=0, X3=0
and/or ®z=(#/2)+km,keZ. We eliminate the first possi-
bility by assumption. If X;=0 then we note that

dx
—5 =~ KXa00s(®s) @

and so this will be nonzero as long as ®z#(#/2)+k for
some k € Z, but from our definition of M;,,®x=0 or =7, so
any trajectory satisfying Eq. (4) will not be contained in
M,,. For the same reason we rule out the case ®=(#/2)
+ k7 and this implies that a trajectory can only be in M,
for an instant in time. As a result, M,, is only an invariant
subspace for the ordinary differential equation if x=0 and
the only trajectories that remain within M, for all time have
X, =X2=X3 =0.

B. Reduction to a system of two lasers with unequal coupling

If we assume that we lie on one of the amplitude synchro-
nized subspaces, where X_=F_=0, i.ec., X;=X; and F,
=F,, then the system (3) simplifies to a two laser system
with unequal coupling between the two lasers.

dX, =[F - (1)]X, = kX, cos(®P),

dF
—L=yA~-F)—-FXD),

2 [Fom - 20K o), (9

dF
— 2= A~ F,—F,X3),

dd) -1 -l 3
== x(X, X7 42X, X5 " )sin(®).

Introducing sum and difference variables in this case gives
us the transformed system,
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dX,
dt X+(F+ €(’))+F X--xcos(@)(3x++x ),
dF
= yA-F, (1+X2+X2)-2F_X_X,),
x_ _
©
- dF_
= AF-(1+X5 +X2)+2F,X_X,),
3 x’+-2-x X +x’)
dd 17T ®
T %% sin(®)

If we assume that the two lasers X, and X, are synchronized
then we find that

TR cos(P)X ,,

dF_ ’
-—d—‘—-o - ()

— =3 x sin(P),

assuming that x#0,X, #0, then we see that X_=0 for at
most an instant in time. Since if cos(®)=0 then ®=(#/2)
+ ko for some ke Z and so

do
77 =3% ®

which is nonzero and therefore @ moves away from (7/2)
(mod 7). Consequently dX _ /dt moves away from 0 and so
X_ also moves from 0. Therefore synchronization is mot
achieved in the asymmetric two laser sewp and thus not
achieved in the original three laser system.

IV. NUMERICAL RESULTS

We carried out numerical simulations independently in

both the loss modulation situation as well as modulation of
the pump excitation. We concentrate on the loss modulated
situation due to numerical considerations, but note that our
results remain valid in the case of pump modulation [18].

A. Loss modulated case

For the loss modulated case, the simulations were per-
formed using both Bulirsch-Stoer and Runge-Kutta integra-
tors. Due to numerical considerations we were forced to con-
sider more moderate values of the stiffness parameter ¥,
which was of the order 0.01 and 0.001. The parameter re-
gimes considered were also altered in order that the differ-
ence in y was taken into account. In both the cases y
=0.01 and ¥=0.001 we saw similar results, and although
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FIG. 6. Lyapunov exponent diagram in the case of modulated
loss. The parameter values for the lasers were assumed identical
and were ag=0.9,a;;,=0.2,p;=1.2 (for i=1,2,3). We assumed the
detunings of the lasers were such that A, = A z=0. We have labeled
the largest tangential Lyapunov exponent A,. Notice that this is
positive for most values of the coupling strength x. The non-
normality of « is apparent through the windows of stability that
arise when varying x. These correspond to the periods where A is
negative. The blowout occurs when the normal Lyapunov exponeat,
A, passes through 0. In this case this occurs for x~0.003 125.

the experiments were carried out with y~1075, the use of
longer resonators would give a value of the stiffness param-
eter somewhat closer to that considered numerically. We car-
ried out simulations for many values of the pump coefficient
and various modulation strengths for the loss.

As in the model for a two laser system, in the case 0
< y<€1, the system undergoes a period doubling cascade to
chaos as the strength of loss modulation is increased. Typi-
cally we see that for small values of the coupling parameter
x, there is no amplitude synchronization and the amplitude
behavior of all three lasers appears to be independent, al-
though with antiphase synchronization between adjacent la-
sers. As the coupling strength is increased, a period of on-off
intermittent type behavior [20], is observed in the amplitude
fluctuations of the two outer lasers. During this period there
are times when the two outer lasers appear to be synchro-
nized in both amplitude and phase, before bursts away from
amplitude synchronization, while remaining completely
phase (anti)synchronized. Then as the coupling strength is
increased still further, there is no more bursting away from
synchrony and the two outer lasers remain amplitude syn-
chronized for all time after an initial transient phase.

For the particular case where all losses are modulated
equally at the rate, 0.9 + 0.2 cos (0.045 t), the pump param-
eters were equal to 1.2 for each laser and A;=Az=0, the
behavior of a typical trajectory is as follows. Upon varying
the strength of coupling x, we see that there exists a critical
value k,~0.003 125 such that for values of k<«,, trajecto-
ries evolve on to the phase antisynchronized state. For values
of k> k. trajectories evolve on to the amplitude antisynchro-
nized state. This transition at «, is strongly suggestive of a
flo}jvom bifurcation, as was the case in a system of two lasers

14].

A blowout bifurcation occurs when a normal Lyapunov

exponent governing the exponential rate of change transverse
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FIG. 7. Lyapunov exponent diagram in the case of modulated
loss. Here the detunings were assumed equal with A,=Ap
=0.001 and the exponents were plotted upon varying the strength
of coupling x. The parameter values for the lasers were assumed
identical and were once again ag;=0.9,a;;~02,p;=12 (for i
=1,2,3). We have labeled the largest tangential Lyapunov expo-
pent A, and the normal Lyapunov exponent A . Similar behavior
to the case of no left and right detuning is seen. However, the point
of blowout is altered, in this case x~0.003 175.

to a submanifold of the total phase space passes through 0. In
the case where there is more than one transverse Lyapunov
exponent we need consider only the largest or normal
Lyapunov exponent. If the normal exponent is negative, then
on average nearby trajectories are attracted onto the sub-
manifold and the attractor within the subspace is an attractor
for the full system. If the exponent is positive then on aver-
age trajectories close to the submanifold are repelled away
from it. -

We have numerically computed the Lyapunov exponents
of Eq. (3) by integrating the variational equations and exam-
ine the change that occurs in the exponents upon varying the
coupling strength x. These are illustrated in the case of no
detunings in Fig 6.

For this system, the blowout bifurcation does not occur at
an isolated parameter value because the bifurcation param-
eter x varies the dynamics tangentially within the antisyn-
chronized subspace as well as those in a transverse direction
from it; it is not a mormal parameter for the dynamics
[21,22]. Because of this (and apparent fragility of the chaotic

attractors) we do not expect the Lyapunov exponents to vary .

smoothly or even continuously with the parameter. Hence we
observe a blurred blowout [22].

The tangential variation of the dynamics is clearly indi-
cated in Figs. 6 and 7, where windows of stability arisc as
the coupling strength « is increased. These windows of sta-
bility correspond to all Lyapunov exponents of system (3)
being negative. In particular, there is a window of stability
shortly after the bifurcation point. :

In order to examine the branching behavior at blowout,
we have simulated the behavior of typical trajectories that
are not in any invariant subspace. Starting at ., there ap-
pears to exist a chaotic attractor A within the antisynchro-
nized subspace, since after an initial transient phase (which
may be prolonged for some initial conditions), all trajectorics
eventually appear to converge to the antisynchronized sub-
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FIG. 8. Numerical simulated three laser model with pump modulation. The modulation rate was again chosen to be near the relaxation
oscillation frequency of the lasers so as to induce chaotic fluctuations in the inteasities.

space. Reducing « towards «x. we find regions of region of
on-off intermittent type behavior, typical for a supercritical
blowout.

After the blowout, we no longer observe any attractors in
the antisynchronized subspace, but there is a new branch of
attractors in the phase antisynchronized subspace are created
at the bifurcation. Just after «, these attractors are apparently
on-off intermittent and close to the antisynchronized sub-
space. The average position of the trajectory moves away as
x—0. This is a strong indicator that the blowout is of super-
critical, soft or nonhysteretic type [16).

We also performed simulations of three loss modulated
lasers in situations where the detunings were equal, i..,
A,=Az=A. We calculated the Lyapunov spectrum in this
case and saw similar results to that of the purely symmetric
case, with the main difference being a bifurcation from the
amplitude antisynchronized subspace, rather than the anti-
synchronized subspace. Again the blowout appears to be soft
with an extended period of on-off intermittent behavior.

For the particular case with parameters identical to those
considered above and a value of the detuning, A=0.001, the
Lyapunov spectrum upon varying « is illustrated in Fig. 7.
Again a blurred blowout is evident, and the normal
Lyapunov exponent passes through zero at x.~0.003 175.

B. Pump modulation

The numerical simulations in the case of modulation of
the pump excitation were carried out using a Runge-Kutta
integrator with a variable time step. Frequency of the depth
of modulation was chosen so that the dynamics of the system
was in a region of chaotic behavior and in this case was
chosen to be 100.53 kHz (in the case of loss modulation it
was 139.62 kHz). As in the case of loss modulation, excel-
lent agreement between the experimental results and the nu-
merical simulations are seen. A high degree of synchroniza-
tion between the two outer lasers and no apparent

synchronization between outer and inner laser. The transient
behavior displayed similar characteristics when compared to
the loss modulated simulations, such as bursts away from
synchronization over short time scales, before settling on to
the synchronized subspace after longer periods of time.

Some of the numerical simulations we performed are il-
lustrated in Fig. 8. The bifurcation analysis is not performed
here, since the simulations indicate similar bifurcation be-
havior to that of the loss modulated case, as would be ex-
pected [18].

V. DISCUSSION

Concluding this work, the synchronization of three class
B Nd:YAG lasers, coupled in a straight line linear array, is
investigated experimentally, analytically and numerically.
We investigate the separate cases of pump modulation and
loss modulation both experimentally and numerically. In the
experiments, a high degree of synchronization is observed
between the two outer lasers of the array, while no synchro-
nization is observed between outer and inner lasers. This is
in good agreement with the theory, which demonstrates this
lack of synchronization between outer and inner Jaser. In the
case of loss modulation we see numerically how the loss of
synchronization between the two outer lasers is lost in both
the fully symmetric case and in the case with equal left and
right detunings, via an apparent supercritical blowout bifur-
cation. This is achieved by varying the strength of coupling
between the three lasers.

For the experimental system, noisc and symmetry break-
ing are both inherent, but even with quite high levels of
noise, we have demonstrated a good degree of synchroniza-
tion particularly in the loss modulated case. In the numerical
simulations, noise and symmetry breaking have similar ef-
fects; in the region of on-off intermittency, it is unlikely that
there will be a noticeable change if the perturbations are
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small. Low levels of noise and imperfections can result in
bubbling type effects [23], which can resemble on-off inter-
mittency in numerical simulations. Consequently, the effect

~ of bubbling on systems such as ours is similar to the effects

of on-off intermittency, namely bursts away from a synchro-
pized state. Such bubbling persists up to a point known as a

bubbling transition [24] (see also the related riddling bifur-
cation [25]). This situation arises when an orbit embedded in

a symmetric chaotic attractor loses its transverse stability. A

Encé‘e detailed description of this situation may be found in
26).

It is interesting to see the harmonic relationships between
the central and the outer beams. Particularly for the loss
modulated case with small nearest-neighbor separations, the
central beam appeared to be at a rate approaching twice that
of the two outer beams. We conjecture that this surprising
phenomenon may be caused by the central beam communi-
cating a greater quantity of information than the two outer
beams. One area of future research is to investigate these
dynamics and examine the effect of parameter variation on
the harmonic relationship.

Although we have shown that there will be no synchroni-
zation between the outer and inner lasers in a three laser
array, the question of generalized synchronization [27]
arises. As we have shown, assuming that the two outer lasers
are synchronized allows us to simplify the model to a system
of two lasers with unequal coupling between the two lasers.
This does not immediately fall into the category of general-
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ized synchronization, since there is feedback from the *‘re-
sponse”’ system into the *‘driving’ system. However, it may
still be possible to make similar conclusions to those of gen-
eralized synchronization in the case where the feedback from
the one system is small compared to the input from the other.

Numerical simulations of the model suggests that for
small symmetry breaking perturbations of the amplitude syn-
chronized state, an instability should arise in the phase lock-
ing of the three lasers as predicted analytically and numeri-
cally in a system of two lasers coupled in a linear straight
line array [19]. Another interesting area of future experimen-
tal work would be to heterodyne the outer beams, examine
the beat frequencies over time to investigate the phase-
locking instability. Such an instability may have an impor-
tant bearing on maximizing power output and coherence in
larger arrays of coupled lasers.
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Transmission of linearly polarized light through a
single-mode fiber with random fluctuations

of birefringence

Gregory D. VanWiggeren and Rajarshi Roy

A simple theoretical formalism is developed to describe the effect of transmission on linearly polarized
light through a fiber with random fluctuations of birefringence. We conclude that, for any optical fiber
that does not experience polarization-dependent gain or loss, there exist two orientations for linearly
polarized light input into the optical fiber that will also exit the fiber linearly polarized. We report
experimental results that verify this prediction and also investigate its practical implications and limi-
tations; in particular we investigate the stability of these linearly polarized output states in laboratory
conditions. © 1999 Optical Society of America
OCIS codes: 060.2310, 060.2400, 060.2430, 060.2420, 260.1440, 260.5430.

1. Introduction

When one works with fiber-optic systems in the lab-
oratory, it is often desirable to couple linearly polar-
ized light into a fiber and to obtain linearly polarized
light at the output as well. One way to accomplish
this is to use polarization-maintaining fibers. The
high birefringence of these fibers allows for linearly
polarized light launched along the proper axis to
travel long distances without change of polarization
state. In ordinary single-mode fiber, however, the
polarization state evolves rapidly as the light propa-
gates. The output polarization will appear uncorre-
lated to the input polarization after only a few meters
of propagation. However, it can be shown that un-
perturbed single-mode fiber can perform the same
function as polarization-maintaining fiber in certain
situations. In this paper we predict theoretically
and demonstrate experimentally that, for any ordi-
nary single-mode optical fiber, two orientations of
linearly polarized quasi-monochromatic input light
will also exit the fiber linearly polarized. When the
ordinary single-mode fiber is not perturbed by exter-
nal stresses or temperature changes, these states are
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reasonably stable for hours—especially for shorter
fiber lengths (100 m or less).

Earlier researchers!-4 have also observed linearly
polarized input and output of light through a fiber.
In Refs. 1 and 2 it is noted that linear light input into
a fiber can be output linearly polarized as well, but no
theoretical explanation is provided. In Refs.3 and 4
the observations of linearly polarized input and out-
put of light through a fiber were explained with a
model that treats the birefringence of the optical fiber
as constant in magnitude and orientation throughout
the length of the fiber. This assumption is not, in
general, correct. Much of the research into the prop-
agation of polarized light in optical fiber has been in
the context of polarization-mode dispersion,5¢ a sub-
ject that is not addressed in this paper.

Here the birefringence fluctuations along a fiber
are treated as a concatenation of wave plates with
each wave plate possessing an arbitrary birefrin-
gence. The simple Jones matrix formalism used to
analyze such a concatenation provides a framework
for understanding many polarization phenomena ob-
served in optical fiber, including polarization-mode
dispersion® and four-wave mixing in single-mode fi-
ber.” The formalism can be used to show that the
operation of randomly fluctuating birefringences in
an optical fiber is the same as the operation of only
one constant birefringence for the whole fiber, as was
assumed in Refs. 3and 4. The formalism provides a
simple way of mathematically determining the par-
ticular orientation of linearly polarized input light
that will also exit a fiber linearly polarized. It
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clearly indicates that only two such orientations can
exist, that they are orthogonal, and that in general
they are not eigenpolarizations. In fact, this formal-
ism shows that the polarization state of eigenpolar-
ized light can evolve as it propagates through the
fiber. Finally, the framework offers a way of under-
standing the effects of polarization-dependent gain or
loss in an optical fiber. Experiments verifying these
predictions and demonstrating their usefulness in a
laboratory setting are performed and the results
given in Sections 3 and 4.

2. Theory

At any point along a single-mode fiber the local bire-
fringence is typically of the order of 1077 < (n, —
ny)/Vnn, < 107%8 Even such a small birefrin-
gence can lead to large changes in the polarization
state of light over 1 m. In real fibers the magnitude
of the birefringence is never constant throughout a
length of fiber. Instead, it fluctuates according to
whatever local stresses, internal or external, exist in
the fiber. To complicate matters further, the orien-
tation of the index ellipsoid rotates unpredictably
from one point to the next in fiber and is sensitive to
movement of the fiber or to changes in temperature.
The birefringence in an optical fiber is also a function
of wavelength, but this wavelength dependence is not
accounted for in the analysis given. Consequently,
the results from the analysis presented in this paper
are valid only in situations in which this wavelength
dependence can be neglected. This condition is often
well satisfied in laboratory settings where the band-
widths of the optical sources are typically 1 nm or less
and the lengths of fiber are less than a few kilome-
ters.

As mentioned above, a length of single-mode opti-
cal fiber is modeled here as a concatenation of differ-
ential elements, each element a wave plate
possessing a birefringence of arbitrary orientation
and magnitude. After passing through one element,
the light passes iuto a second element, and so on,
until it reaches the end of the fiber. In a Jones ma-
trix representation® this process can be described a
series of phase-shift and rotation matrices%.1:

A phase shift of & is described by the matrix

, - [exp(i3/2) 0 |
C(8)-[ 0 exp(-iS/z)]' (1)

In the model the phase shift is given by 8 = 2nL(n, —
ny)/\, where L is the length of the differential ele-
ment and n, and n, are the indices of refraction along
the fast and slow axes, respectively. A rotation of
the index ellipsoid by an angle 8 is represented by the
matrix

cos 6
sin 6

-sin 0
w”]. @

o]

The polarization properties of a length of fiber, then,
can be represented as a product of many unknown
phase-shift matrices and rotation matrices:

M = C3)R(0)C(e)R(d). . .. 3)

The product of a phase-shift matrix and a rotation
matrix can produce any arbitrary unitary matrix.
Consequently, the form of M is also the most general
form of a unitary matrix:

M=[“ b], @)

-b* a*

where |a?| + |b%] = 1. The unitary nature of the
matrix M allows for it to be decomposed into only one
appropriate phase-shift matrix C multiplied by one
rotation matrix R. Interestingly, this suggests that
any fiber’s net effect on the polarization state of light
is identical to the effect of one particular wave plate
with a constant phase shift and orientation of its
axes.

A proof for the form of M can be given quickly*!
with the Pauli matrix

2=[_°1 (1)]

Now 2 has the following properties:

3=,
where I is the identity matrix,
ZR(8)z = —R(8), 5)
3C:=-C,

where the elements of € are the complex conjugates
of the elements of C. If a general matrix form for M
is assumed, then

where the elements are all complex. Performing the
matrix multiplication gives

-b a
From Eq. (3) it is also true that
SMS = SCORO)C(€)R(). . .C(YRW)Z
= ~3C(B)IR(0)22% . ICHY)Z’RWY)Z
= —CEREO)C(©)R(D). . CHIRW)
= -CER@O)C(OR©). . .CHRW)
' a* b*]
c* d* N

When we take the results from Egs. (6) and (7), it is
clear that d = a* and ¢ = —b* and that the form of M
given in Eq. (4) has been proved.

2M‘£=‘—[d ’c]. (6)

M= -[ @

20 June 1999 / Vol. 38, No. 18 / APPLIED OPTICS 3889



i

»

Light in a fiber has electric-field components along
two orthogonal transverse axes. These axes are cho-
sen arbitrarily and denoted here asx and y. In the
Jones matrix representation these complex compo-
nents are represented as a vector j, = (E, E,). The
output fields are represented by jo. = (E, E’Z). The
transformation of light as it propagates through the

length of the fiber is thus given by
jout = M 'jin' (8)

To obtain linearly polarized output from the fiber,
the ratio E,/E; must be real, though both compo-
nents are in general complex. In other words, the
input electric-field components E, and E, must sat-

_ isfy the condition

E\_ __ aE, + bE,
Im(E,’) =0= “bE, + o*E, c.c., 9)

where c.c. is the complex conjugate.

The ratio of the input electric-field components
E./E, is also real, because the input light is linearly
polarized. Rewriting Eq. (9) in terms of theratior =
E,/E, and rationalizing gives

Im(a® - b%) _
r Im@b) r—1=0. (10)

The two solutions for r given by Eq. (10) correspond to
orientations of linearly polarized input light that will
also exit the fiber linearly polarized. By using these
solutions for r to construct the vectors ji,. and ji,-
and then taking the dot product, we can show that
the two solutions, and thus their corresponding input
orientations, are orthogonal. Finally, solving Eq. (8)
fOr jour+ and jou—, We can show that the output ori-
entations are also orthogonal. It should be noted
that the polarization states of these solutions are not
maintained as they propagate; instead, they evolve
continuously. The evolution of these particular ori-
entations, however, is precisely such that the light
exits the fiber linearly polarized. It is also impor-
tant to note that neither j;, , norj;,_ is an eigenvalue.
Although both the input and the output are linearly
polarized, the angular orientation is not necessarily
the same. '

A less idealized model for a length of optical fiber
would have to include effects such as gain or loss.
For long fibers, loss may be significant. Gain and
loss can be incorporated into the description given
above by simple inclusion of an appropriate Jones
matrix for a polarization-dependent gain or loss,

G, d) = [g g], a1

where ¢ and d are real.
The gain or loss need not be oriented along the
same direction as the birefringence, but an extra ro-
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Fig. 1. Experimental setup for measuring polarization of a test
fiber. The extinction ratio results were obtained with the second
polarizer and the power meter. The results shown in Figs. 2-4
were obtained with the polarization analyzer after the test fiber.
P.C., polarization controller.

tation matrix in each differential element would com-
pensate for this. Thus

M = C(3)R(6)G{c, d)R($)C(e)RW)Gle, /IR(). . . .
(12)

By applying G to the framework developed above, we
can show that if ¢ = d then the effect of such a loss or
gain is simply to multiply M by a constant value. In
this case the discussion above is unaffected. How-
ever, if the elements of G are not identical, ¢ # d, in
each differential element, the proof given above no
longer holds. Stated another way, if a fiber has
polarization-dependent gain or loss, M will not have
the same form as in Eq. (4), and the treatment given
above will no longer apply.

8. Experiment

Birefringences in a fiber, and thus the matrix M for
that fiber, are highly sensitive to movement and to
other environmental perturbations. It is important,
therefore, to verify that the theory’s predictions can
be demonstrated experimentally and to investigate
the conditions in which the theory applies.

Figure 1 shows the basic setup. - A tunable diode
laser is used to produce 4 mW of light with a wave-
length of 1550 nm and a 150-kHz linewidth. The
light propagates down a fiber and is coupled to free
space with a graded-index (GRIN) lens where it
passes through a sequence of three wave plates (\/2,
M/4, \/2). These three wave plates operate on the
light from the tunable diode laser to ensure that the
light is roughly circularly polarized when incident on
the polarizer so that roughly equal power is trans-
mitted through the polarizer as it is rotated. An-
other GRIN lens couples the light that passes
through the polarizer into the test fiber.

In the first set of experiments the light transmitted
by the first polarizer is launched into the test fiber
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Fig. 2. Polarization state paths (thicker curves) traced at the
output of the fiber as the polarizer at the input is rotated through
180°. (a) 8-m test fiber. (b) 35-km test fiber.

and propagates until it reaches a second polarizer.
The light that passes through the second polarizer is
then input into an optical power meter. The two
polarizers are adjusted to achieve maximum extinc-
tion as measured by the power meter. Experimen-
tally, two orientations of the first polarizer were
found, which allowed for maximum extinction.
Thus the experiment demonstrates that two orienta-
tions of linearly polarized input light gave linearly
polarized light at the output of the test fiber. This

was true for both the short, 8-m, and the long, 35-km,

lengths of fiber that were tested. For both lengths it
was also observed that the orientations of the two
linearly polarized inputs were orthogonal to within a
measurement error of £0.5°. The linearly polarized
output, to within the same error, was also orthogonal.
All of this is as predicted by the proof developed
above. The extinction ratio for the short test fiber
was >45 dB, whereas for the 35-km sample it had

" fallento 35dB. In all cases the ratio is large enough

to accurately determine the location of the extinction
maxima. The decrease in the extinction ratio is
most probably due to scattering phenomena that de-
polarize the propagating light. ‘

As a measure of the wavelength dependence of this
result, amplified spontaneous emission light from an
erbium-doped fiber amplifier (EDFA) was used as the
source. The amplified spontaneous emission light is
very broadband, possessing a 3-dB bandwidth of ap-
proximately 5 nm centered at 1532 nm. Even with
such broadband light, a >15-dB extinction ratio was
obtained after propagation through an approximately
1.5-km optical fiber.

Another set of experiments was performed with a
polarization analyzer. For the 8-m and the 35-km
test fibers mentioned above, a series of measure-
ments were made in which the input polarizer was
rotated, and the resulting polarization states were
tracked on the Poincaré sphere. As can be seen in
Fig. 2, rotating the polarizer through 180° causes

(a)

Fig. 3. Smear of points on the Poincaré sphere represent the
evolution of the output polarization from an 8-m length of optical
fiber during 32 h under typical laboratory conditions. (b) Same
experiment showing the evolution of the output state of polariza-
tion of a 35-km length of fiber overonly 4 h. Both experiments are
intended to give some practical indication of the stability of the
output polarization of a single-mode fiber when the input polar-
ization is held constant.

great-circle paths to be traced out on the Poincaré
sphere. The paths intersect the equator twice, and
on opposite sides of the sphere. Because the equator
of a Poincaré sphere represents linear polarization (s3
= 0), these paths indicate that two orientations of the
input polarizer will result in linearly polarized light
output from the fiber. The fact that the intersec-
tions with the equator occur on opposite sides of the
sphere demonstrates that the two linearly polarized
output states are orthogonal, as predicted by the the-
ory. The different paths traced around the Poincaré
sphere shown in Fig. 2 for the same fiber are the
result of simple rearrangement of the way the fiber
lay on the experimental table. This is simply a man-
ifestation of the fact that the polarization properties
of fiber are sensitive to changes in external stresses.

For single-mode fiber to be useful in transmitting
linearly polarized light from one place to another, the
polarization state of the output light should be rela-
tively stable under laboratory conditions. The po-
larization state of light output from a fiber was
tracked over time by a polarization analyzer. As
seen in Fig. 2, the polarization state of the output
light is represented as a point on the Poincaré sphere.
Figure 3 shows the wandering of that point with time.
In Fig. 3(a), the 8-m case, the fiber was coiled and lay
on an optical table. The data shown were obtained
over the course of 32 h. The relatively small excur-
sions show that the polarization state was fairly sta-

Fig. 4. (a) Polarization path traced by output light after experi-
ence of a small polarization-dependent gain in an EDFA.  (b) Path
traced by output light experiencing polarization-dependent loss.
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ble over that entire time. Figure 3(b) was obtained
over a period of 4 h with a 35-km length of fiber
wrapped around a spool in the same laboratory set-
ting. Not surprisingly, the length of the fiber seems
to have an effect on the stability of the polarization
state over time.

4. Effects of Loss and Gain

Two more experiments were performed to test the
effect of polarization-dependent loss and gain on the
polarization properties of a fiber. In the first exper-
iment an EDFA was used as a source of polarization-
dependent gain. The amplifier’s specifications
suggest a polarization-dependent gain of <0.3 dB,
which is consistent with the very small (difficult to
measure) ~0.1 dB of polarization-dependent gain ob-
served in the laboratory for a small-signal gain of
~27 dB. Although the EDFA gives an almost
polarization-independent amplification of signals, it
seems plausible that the winding of the doped fiber
and the polarization of the pump lasers would con-
tribute to polarization-dependent gain within indi-
vidual elements along the fiber. This would result
in local differential element gain matrices, G(c, d),
which have ¢ # d. Although the total output power
might be almost polarization independent, the form
of M would be different from Eq. (4). This polariza-
tion gain dependence results in the deviation from a
great circle that is observed in Fig. 3(a).

Another experiment was conducted to investigate
the effect of polarization-dependent loss. In the test
fiber portion of the experiment the light was coupled
to free space, again with a GRIN lens. From there it
passed through a birefringent calcite crystal that acts
as a polarizing beam splitter. When we controlled
the angle of a glass plate behind the crystal, the
amount of light from each polarization that was cou-
pled through a GRIN lens and back into the test fiber
could be controlled. Depending on the angle of the
glass plate, one polarization or the other could be
coupled preferentially back into the test fiber. This
device acts as a polarization-dependent loss. When
such a polarization-dependent loss is created, the
path on the Poincaré sphere that results from rota-
tion of the input polarizer is not a great circle, as is
evident in Fig. 3(b). :

5. Conclusion

Using the Jones matrix formalism, we have proved
that two orthogonal orientations of linearly polarized
light can be launched into any single-mode fiber such
that linearly polarized light is output from the fiber.
Experiments were performed that verified these pre-
dictions. They also revealed, in accordance with the
model, that these same predictions cannot be ex-
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tended to the case of fiber with polarization-
dependent gain or loss.

Knowing that ordinary single-mode fiber can trans-
mit linearly polarized light may have some practical
applications in laboratory settings. As with
polarization-maintaining fiber, the proper axes for
input and output must be found before this property
can be used. Unlike with polarization-maintaining
fiber, when we obtain linearly polarized input and
output light with ordinary single-mode fiber, precau-
tions must be taken against perturbing the fiber once
these axes have been found. Although the particu-
lar orientation of linearly polarized input and output
light for an unperturbed length of fiber may drift on
a time scale of minutes or hours, it seems plausible
that a simple feedback algorithm could be developed
for maintaining the proper axes indefinitely.

We acknowledge support from the Office of Naval
Research. We thank P. O’Shea, J. Buck, and A.
Judy for helpful discussions and C. Verber for essen-
tial instrumentation.
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Abstract

We discuss experimental demonstrations of chaotic communication in several
optical systems. In each, an erbium-doped fiber ring laser (EDFRL) produces chaotic
fluctuations of light intensity onto which is modulated a message consisting of a
sequence of pseudorandom digital bits. This combination of chaos and message
propagates at a wavelength of ~ 1.5 microns through standard single-mode optical fiber
from the transmitter to a receiver, where the message is recovered from the chaos. We
present evidence of the high-dimensional nature of the chaotic waveforms and
demonstrate chaotic communications through 35 km of single-mode optical fiber at up to

250 Mbit/s, a rate that is, at presenf, limited only by the speed of our detector electronics.




L Introdqction

A chaotic waveform that serves as a carrier of information represents a
generalization of the more traditional sinusoidal carrier and offers the potential for
enhanced privacy in communications. In ordinary radio communication, a specific
frequency sine-wave carrier is modulated with a message and transmitted. A radio
receiver must be tuned to the particular frequency of the carrier sine wave in order to
recover the message. In conceptually the same way, the experiments presented here
demonstrate that information can be recovered from an optical chaotic carrier using a
receiver that is synchronized or "tuned" to the chaotic dynamics of the transmitter.

The synchronization of chaotic systems plays an important role in chaotic
communications. The application of chaotic synchronization to secret communication
systems was suggested in early work by Pecora and Carroll [1990; 1991]. They
discovered that a chaotic transmitter could consist of an electronic circuit that simulated
the dynamics, for example, of the Lorenz model [Ditto & Pecora, 1993]. Th¢ message to
be concealed, assumed small in magnitude, was added to the chaotic fluctuations,
assumed to be much larger, of one of the variables (let us choose the z variable for this
purpose) and transmitted th the receiver, while another chaotic variable (let us choose x)
was separately transmitted. The receiver consisted of a subsystem of the circuits in the
transmitter that generated the dynamics of the y and z variables, and was driven by the
signal from the x variable of the transmitter. The receiver synchronized to the chaos of

the transmitter if the conditional Lyapunov exponents for the systems were negative for

the given operating parameters.



One could then recover the message from the chaos through a subtraction at the receiver.

Cuomo and Oppenheim [1993; see also Strogatz, 1994] introduced an elegant
variation of the method above that did not require the separate transmission of a driving
signal to the receiver. They showed that the receiver could actually synchronize to the
chaotic dynamics of the transmitter even when a message was added to the chaotic
driving signal from the transmitter. The synchronized output from the receiver was then
used to subtract out the information from the transmitted signal. The synchronization
was not perfect, and the message, treated as a perturbation of the chaotic signal, had to be
small compared to the chaos [Cuomo er al., 1993]. Development of techniques in which
the message actually drives the chaotic transmitter system, in addition to being
transmitted, were made by Wu and Chua [1993], Volkovskii and Rulkov [1993], and by
Parlitz et al. [1996). The synchronization between receiver and transmitter can be exact,
so message recovery can be very accurate in principle. The experiments reported in this
paper are related in spirit to a method developed first in electronic systems by Volkovskii
and Rulkov [1993], who suggested the use of an open-loop system in the receiver. A
different, adaptive approach to synchronization and secure communications was
introduced by Boccaletti, Farini and Arecchi [1997].

A proposal to use modulated unstable periodic orbits (UPOs) for secure
communications and multiplexing was made by Abarbanel ahd Linsay [1993].
Multiplexing would be possible by using different UPOs to carry different messages. An
alternate approach to chaotic communications with UPOs was developed by Hayes et al.

[1993; 1994]. They symbolically encoded digital information into UPOs of a chaotic




system and used chaos control methods to switch between different orbits. This approach
does not attempt to provide any privacy to the information being transmitted.

The issue of privacy, however, arises naturally in a discussion of chaotic
communication and is an important motivation for chaotic communication research. In
his pioneering paper, "Communication Theory of Secrecy Systems", Claude Shannon
discussed three aspects of secret communications systems: concealment, privacy, and
encryption [1949; see also Hellman, 1977, Welsh, 1988]. These aspects apply to
systems that use chaotic waveforms for communication and can be interpreted in that
context. Concealment of the information occurs because the chaotic carrier or masking
waveform is irregular and aperiodic; it is not obvious to an eavesdropper that an encoded
message is being transfrxitted at all. Privacy in chaotic communication systems results
from the fact that an eavesdropper must have the prober hardware and parameter settings
in order to decode and recover the message. In conventional encryption techniques, a key
is used to alter the symbols used fdr conveying information. The transmitter and receiver
share the key so that the information can be recovered. In a chaotic communication
system, a transmitter that generates a time-evolving chaotic waveform acts as a
"dynamical key" to transform the information symbols. The information can be
recovered with a receiver possessing the same dynamical key, i.e., its configuration and
parameter settings are matched to those of the transmitter. It is interesting to note that
using a chaotic carrier to dynamically encode information does not preclude the use of
more traditional digital encryption schemes as well. Dynamical encoding with a chaotic

waveform can thus be considered an additional layer of encryption.




Two factors that are important to privacy considerations in chaotic
communication systems are the dimensionality of the chaos and the effort required to
obtain the necessary parameters for a matched receiver. Earlier work has shown that for
c‘ertain chaotic communication techniques, particularly those involving additive masking
of a message by a chaotic carrier, the message can be recovered from the transmitted
signal by mathematically reconstructing the transmitter’s chaotic attractor if the chaos is
low dimensional [Short, 1994(a); Short, 1994(b); Perez & Cerdeira, 1995]. Higher
dimensional signals, especially those involving hyperchaotic dynamics, are likely to
provide improved security. The number of parameters that have to be matched for
information recovery and the precision with which they must be matched are important
aspects of receiver design. We will show how the configuration and operation of the
receiver may be designed to make it more suitable for private communications. At this
point we would like to emphasize that the security of communication techniques is a
complex and involved issue. In the work reported here, we do not make any claims of
secure communications. Indeed, we do not know of any systematic cryptogréphic
approach that has been taken to examine the security of different chaotic communication
systems. We regard this as a very important open problem for future analysis.

Most realizations of chaotic communications have occurred in electronic circuits

that simulate the dynamics of simple model systems (Lorenz, R&ssler, double scroll or

Chua system, etc.), even for the case of hypérchabtic systems. Peng et al. [1996]

theoretically examined the question of synchronization of hyperchaotic Réssler systems

and showed that synchronization is successfully achieved over a wide parameter range by

using a transmitted signal that is a linear combination of the original phase space



variables. Mensour and Longtin [1998] have studied the synchronization of hyperchaotic
systems described by Mackey-Glass delay-differential equations, with their use for
private communications.

Optical systems present a somewhat different situation; one often does not know a
priori what the equations are that should be used to model the system. Rather, insight
into the formulation of appropriate models must be gained through experimental
observations of the system dynamics. We follow this approach throughout this paper.
Our research into chaotic communications using'optical systems began when we
experimentally achievéd chaotic synchronization of two mutually coupled Nd:YAG
(neodymium doped yttrium aluminum garnet) lasers that were operated side by side in a
single YAG crystal [Roy & Thornburg, 1994; Sugawara et al., 1994]. We then proposed
a scheme for digital communication with a transmitter laser unidirectionally coupled toa
distant laser used as a receiver [Colet & Roy, 1994]. The chaotic dynamics for these
systems is not high-dimensional [Alsing et al., 1997], and we showed that the message
could be recovered fairly easily by time-delay embedding of the signals, unless one
introduced complex modulations to increase the dimensionality of the dynamics. The
dynamics present in such lasers is also rather slow, on the microsecond time scale at best.

Our next step was to examine a laser system that would prbvide not 6nly a high-
dimensional dynamics, but also a much greater bandwidth and high speed for signal
transmission and recovery. This led us to the study of erbium doped fiber ring lasers
(EDFRL) we developed a simplified model for the operatlon of an EDFRL in [Williams
et al., 1997] . These lasers emit at 1.53 - 1.55 microns, the wavelength regime of choice

for optical communications in fibers, which have minimum loss in this range. The




emission is broadband (covering many nanometers), and we found the dynamics present
in this system té be extremely fast. We estimate the bandwidth of the light intensity
fluctuations to be in the range of many gigahertz, but the bandwidth of our electronic
detection equipment prevents direct observation of the higher frequencies.

Ring cavity optical systems with nonlinear elements, as pointed out by Ikeda and
coworkers many years ago [Ikeda ez al., 1980; Ikeda & Matsumoto, 1987}, can possess
very high-dimensional chaos resulting from the operation of the intra-cavity nonlinear
elements and time-delayed feedback. Depending on the setting of the operating
parameters of the erbium doped fiber ring laser system, one can observe both low- and
high-dimensional dynamics [Ikeda et al., 1980]. Simulations of Ikeda type ring systems
by Abarbanel and Kennel reveal dimensions of order twenty five or higher [Abarbanel &
Kennel, 1998]; they have also numerically demonstrated the synchronization of two ring
cavities via unidirectional coupling. The dimensionality of the chaos in our experiments
has been analyzed from the measured data using a false-nearest-neighbors (FNN)
algorithm [Abarbanel, 1996] and found to be of order 10 or higher. Erbium doped fiber
ring lasers therefore simultaneously offer the advantages of high-dimensional dynamics
and high-speed communications.

Very recently, we reported the first experiments on all-optical chaotic
communication of 10 MHz square waves using erbium doped fiber lasers and
amplifiers [VanWiggeren & Roy, 1998]. A very interesting experiment on chaotic
communications was reported simultaneously by Goedgebuer and colleagues [1998], who
used a hybrid electro-optic system to encode a 2 kHz sine wave in the chaotic wavelength

fluctuations of a tunable semiconductor laser and then decoded the information with an




open-loop ref:eiver. They also used a time-delay system [Larger et al., 1998] to generate
high-dimensional chaotic dynamics.

The experiments described in this paper more fully take advantage of the large
bandwidth available in an EDFRL, demonstrating communication of return-to-zero (RZ)
pseudo-random digital bits at rates of 125 Mb/s. Results from an experiment showing
communication of a non-return-to-zero (NRZ) digital message at 250 Mbit/s are also
discussed. Currently, the bit rate is limited by the bandwidth of our detection equipment.
Though the high-dimensional dynamics of an EDFRL system offer the potential for
privacy, we note that many of the expeﬁments and techniques discussed in this paper are
unlikély to be useful for private communications; rather, descriptions of those
experiments are included because they both established and furthered our understanding.
The more fecent experiments described in this paper, however, do seem to offer the
possibility for enhanced privacy in communication. A discussion of the privacy aspects
of each method is included.

All of the communication experiments described in this paper use an EDFRL to
generate chaotic waveforms and employ unidirectional coupling of the transmitter to the
receiver. Each technique described utilizes an open-ring receiver designed to mimic the
dynamics of light propagating once through the transmitter ring. The message to be
communicated modifies the chaotic dynamics of the transmitter, and by comparing the
output dynamics from the transmitter to the open-ring receiver dynamics, the message
can be recovered. The message itself drives the chaotic dynamics of the transmitter.

Thus, the manner in which the message is dynamically encoded is at least partly

dependent on earlier portions of the message.




We took two distinct approaches in developing chaotic communication in
EDFRLs. The first approach involves coupling an optical message signal from an
external laser directly into the EDFRL. In the second approach, an intensity modulator is
inserted within the ring laser itself to encode the message directly onto the chaotic carrier.
A development of this technique incorporates two time-delays into the dynamics of the
transmitter, making the information transmission more private.

A feature of all of the.se communication systems is that there is no encoding of
symbols into unstable periodic orbits of the chaotic system, as has been proposed and
demonstrated recently [Hayes et al., 1993; Hayes et al. 1994]. Thus there is no loss of
speed in communication that could occur through the use of higher order orbits for
symbolic coding or transients to synchronization in closed-loop communication systems.

This paper is organized as follows. Section II contains a description of the
experimental system used for message injection from an external tunable semiconductor
laser system and dynamical encoding with a chaotic EDFRL. The technique used to
recover the digital information is outlined. The results of experiments that use
polarization or wavelength filters in the EDFRL are given in Section IIL.1(A) - IL.1(C).
These experiments enabled us to reduce the interference between message and chaotic
lightwaves and revealed many features of the wavelength and polarization dynamics of
the laser system. In section I1.2(A) and II1.2(B) the results of message injection
experiments performed without an& wavelength or polarization filters are given. The
possibility of dynamical encoding and wavelength multiplexing are examined. Section

IV contains a discussion of the privacy and consistency of information recovery of the

message injection techniques.




A different approach for dynamical encoding with an intra-cavity modulator is
described in Section V, and the results of these experiments are given in Section VI. No
external laser for message injection is needed for this technique, and the encoded
information is recovered by a division of signals in the receiver. A modified intra-cavity
modulation technique that adds a second fiber loop (and hence a second time-delay) to
significantly enhance the privacy of the information is presented in Section VII and the
results are given in Sectioh VIII. We show that information is dynamically encoded and
consistently and clearly recovered at 125 Mbits/s (return-to-zero, or RZ format) or 250
Mbits/s (non-return-to-zero, or NRZ format) and examine the result of mismatch of
receiver configuration or parameters. A discussion of the bit-error rate ( < 10%) and
results for communication through more than 35 km of fiber (including an eye-diagram)
is given. Section IX contains a discussion of the modified intra-ring modulator technique
including results of a false nearest neighbors estimate of the dimensionality of the chactic
dynamics for this technique. Section X concludes the paper with a brief recapitulation of
goals and results. We finally mention some open questions that must be addressed before

practical implementation of these ideas.

II. Experimental Setup and Operation Using Message Injection:

Several variations of the message injection approach are described first, but their
general form is shown in Fig. 1. To create the optical message, light produced by an -
external-cavity tunable diode laser is amplitude modulated by a lithium niobate Mach-

Zehnder interferometer to form a sequence of pseudo-random bits. After modulation,

the lightwave is amplified in a controllable fashion by an erbium-doped fiber amplifier
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(EDFA) with a 13 dBm maximum output power. This step governs the amplitude of the
rhessage injected into the EDFRL. The amplified message then passes through a
polarization controller consisting of a series of waveplatés ()\/4, A2, M4) arranged to
permit complete control over the polarization state of the message as it is coupled into the
ring.

~ The message light is injected into the EDFRL through a 90/10 waveguide coupler,
which allows 10 percent of the message light to be injected into the ring, while retaining
90 percent of the light already in the ring. The light propagates to a 50/50 output coupler
that sends half the light in the ring to the receiver unit, while the other half passes through
EDFA. This EDFA has 17 dBm maximum output power and 30 dB small signal gain.
The active (doped) fiber in the EDFA is 17 m long and is pumped by diode lasers with a | -
980 nm wavelength. After passing through the EDFA, the light then travels through a
filter consisting ofa polarization controller, again a series of waveplate;s, and either a
polarizer or bandpass filter depending on the variation of the method being used. The
total length of the active and passive fiber in the ring totals approximately 40 m, »whjch
corresponds to a round trip time for light in the ring of about 200 ns. Isolators in the
EDFA ensure that light propagates unidirectionally in the ring, as indicated by Fig. 1.
Unless otherwise specified in the descriptions of subsequent experiments, the transmitter
EDFRL is operated at pump powers more than 10 times threshold. Typical optical
powers in the ring are between 10-40 mW depending on the losses in the ring.

Light exiting the ring through the 50/50 output coupler propagates in an optical

fiber to the receiver unit. Light entering the receiver unit is split at the 90/10coupler.

Ten percent passes through a variable attenuator that prevents photodiode A (125 MHz
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bandwidth) from saturating. The other 90 percent of the light passes through EDFA 2
and another filter. EDFA 2 and the receiver filter are intended to be replicas of EDFA 1
and the filter in the transmitter so that the receiver can synchronize to the dynamics of the
transmitter. Aftgr passing through EDFA 2 and the receiver filter, the light passes
through an attenuator and is measured by photodiode B (125 MHz bandwidth). The
signals from photodiodes A and B are recorded by a digital oscilloscope with a 1 GS/s
sampling rate and 8-bit resolution.

A model for the EDFRL without message injection is given in [Williams et al.,
1997]. It consists of two delay equations for the two polarizations of the electric field
and one differential equation for the population inversion. The functional forms of these

equations, including message injection, are

E ()= flE;(r=1,), N(),m(t-1,)] (1)
and

N(t)=g[E, (1), N(1)] | )

f and g are nonlinear functions of the population inversion, N(t) , and the complex
slowly varying envelope of the chaotic electric field in the transmitter, E(¢). The
message is represented as m(?), ar'ld the time it takes light to make a round trip in the
EDFRL is 7,. Eq. 1 shows that the electric field E,(f) at any point in the cavfty is
functionally dependent on the electric field and message, E,(t—1,;) and m(t-1,), at

that point one round trip earlier.
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Conceptually, the method we use is similar to one described by Volkovskii and
Rulkov [1993], but it has been modified to incorporate time-delays, optical phase, and
polarization effects. The light that is transmitted from the EDFRL to the receiver unit is
s(t) = Er(t)+ m(f). If the injected message power is not too large (typically on the order
of a few milliwatts or less), the message is “masked” by the larger (10-40 mW unless

otherwise specified) chaotic intensity fluctuations. For simplicity, imagine that
photodiode A detects its fraction of s(f) at the same moment that the remaining fraction
of s(f) is incident at EDFA 2. The amplifier and filter then operate on the remaining
fraction (~90%) of s(z) to produce the waveform E(z+1,), which arrives at photodiode
B with a time-delay equal to one round trip time in the transmitter, 7. At precisely this
moment, photodiode A is detecting s(t+17,)=E (t+1,)+m( +1,). Note that
E,(t+1,) is produced when EDFA 1 and the filter (in the EDFRL) operate on
s(t)=E,()+m(r). Because EDFA 1 and the filter in the transmitter operate on light in
the same way as EDFA 2 and the receiver filter, E (t+2z) =E (1 +17,).
Mathematically, this occurs because f and g are the same in both systems, the systems
have negative conditional Lyapunov exponents, and they display synchronization ina
global sense [Abarbanel & Kennel, 1998). The two photodiodes, therefore, measure the

intensities [E,(t+ T,)+m(t+7, ) and [E4(t+ 7, )’ respectively. The difference of these
two measurements at any time is 2 Re{E; (t+7,)m(t+7 R)} +m(t+ 7, )|2 .

When no message is transmitted, it is clear from the preceding discussion that the

transmitter and receiver should be synchronized. In other words, the two photodiodes

. 2 2
should measure the same intensities, [E(¢+7;)|" =|E(t+7,)| . The results of an
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experiment in w;xich no message was transmitted are shown in Fig. 2. Fig. 2A shows the
signal from the transmitter with the laser operated far above threshold (greater than 10
times the pump power required for threshold). A time-delay embedding of the data in
Fig. 2A is given in Fig. 2B, it shows that the chaos is not low-dimensional. Fig. 2C
shows the signal recorded by photodiode B. The straight line shown in Fig. 2D
demonstrates the synchronization of the light intensities as measured by photodiodes A
and B. We used a numerical false-nearest-neighbors (FNN) algorithm [Abarbanel, 1996]
in an attempt to estimate the &imensionality of the signal. The results are presentéd in
Fig. 2E. The dimensionality of a time-series can be estimated by observing the
dimension at which the percentage of false-nearest-neighbors goes to zero. Interestingly,
we observe that for analysis of 250,000 points acquired at 1 GS/s, the FNN algorithm
gives a dimension of 8. The limited bandwidth of our photodiodes does not allow
measurement of the much higher frequencies that may be present in the real signal.
Consequently, there may be additional attractor dimensions that do not manifest
thémselves in the data we obtain. Fig. 2E shows that the natural dynamics of the ring
laser are hot low-dimensional for the operating parameters used, even without the
presence of an injected message to influence the dynamics of the ring laser.
II1. Results for experiments using message injection

Two basic techniques\using an injected optical tﬁessage have been investigated.
The first technique follows from the description above, but a generalized “filter” is used
in both the transmitter and receiver units. Several variations of this technique are
presented. The second technique is conceptually similar to the first, but no generalized

filter is necessary.
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II1. 1(A)

In our first variant of this method, m(z) is injected into the EDFRL with a polarization
orthogonal to E(¢) but with the same wavelength. The polarization of the injected m(z)
is determined using the polarization controller in the message modulation unit. The filter
in the EDFRL transmitter is a polarizer. The polarization controller and polarizer in the
EDFRL are aligned such that the m(¢) in the EDFRL is “blocked” upon reaching the
filter, while still allowing an orthogonally polarized E.(¢) to pass through relatively
unchanged. In this manner, m(t)is prevented from circulating in the EDFRL and mixing
with E_.(f) on more than one pass through the EDFA, though it is transmitted to the
receiver unit. The filter in the receiver unit is also aligned to prevent light bolarized in
the same direction as m(z) from reaching photodiode B. Subtracting the signals at the -
photodiodes, as mentioned earlier, gives 2Re{E'T(t) . m(t)} + |m(t)|2. The cross term is
eliminated in this technique because E,(¢) and m(¢) are orthogonally polarized. This
leaves just jm(t)[’ after subtraction.

Fig. 3 shows the results of an experiment using this technique. Fig. 3A is a time-
trace of the transmitted signal, s(), as measured by photodiode A, and Fig. 3B is its
power spectrum. No hint of the message can be discerned in the time-trace of the signal.
The broadband nature of the transmitted signal is evident from the power spectrum. The
spectrum’s gradual decline With increasing frequency matches the spectral response of
our photodiodes (125 MHz bandwidth) and results from this limitation. Fig 3C is a time
trace of the signal measured by photodiode B, and its power spectrum is shown in Fig

3D. The power spectrum of the received signal lacks the smaller, fine peaks of the
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transmitted signal. As can be seen in our next figure, those fine peaks are just the power
spectrum of our repeating sequence of bits. Fig. 3E results from a subtraction of the
waveform data in Fig. 3C from the data in Fig. 3A. The “random” bits are clear and
match the 125 Mbit/s pattern used for this experiment:
11001101110110100100101111101010. Fig. 3F is the optical spectrum of the
transmitted signal s(f) showing that both m(z) and E(r) have the same wavelength,
~1.532 um.

Fig. 4 is included as a measure of the accuracy of this technique. For comparison,
Fig. 4A shows a segment of the message sequence as detected by photodiode A in the
absence of chaos (EDFA 1 is turned off and E,(r) = 0). Fig. 4B is simply the power
spectrum of the entire recorded message sequence. Fig. 4C shows a portion of the
message obtained through the chaotic subtraction. Clearly, the recovered rﬁessage is
degraded somewhat, probably due to imprecision in matching the polarization-based
filters in both the transmitter and receiver. The power spectrum of the recove}'ed
message, a segment of which is shown in Fig. 4C, is shown in Fig. 4D. The peak
corresponding to the 125 MHz bit-rate is evident in Fig. 4B.

III. 1(B)

In the preceding technique, the wavelengths of m(¢) and E, () were the same, but
their polarizations were onhogonai. In this method, however, the wavelengths are
different, but their polarizations are the same. The filter in the EDFRL again consists of
the polarization controller followed by a polarizer. The polarization cont;ol!e_i m gle
message modulation unit is adjusted so that the polarizations of m(r)and E,(¢) are

parallel as they are transmitted from the EDFRL to the receiver unit. Again, the filter’s
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purpose in the EDFRL is to “block” light associated with m(#)from continuing to

iw

circulate in the ring. A moment of explanation will be useful here.

m(t) and E. () have the same polarization at the coupler where the message is
injected. As the light propagates around the ring, the difference in wavelength, typically
~20 nm, results in a different output polarization state for light at the two wavelengths.
We observe that this phenomenon of polarization dispersion occurs primarily in the
erbium-doped fiber in the EDFA. At the filter, m(z) is almost completely orthogonal to
E,(#). Thus, m(f) can be “blocked” by the polarizer while E..(f) continues to circulate.
The method works as described above, but this time the cross-term averages to zero
because m(t) and E,(¢) have different optical frequencies; once again, only Im(r)?
remains after subtraction of the two photodiode signals.

Fig 5A shows the signal transmitted from the EDFRL to the receiver unit as
detected by photodiode A. Its power spectrum is shown in Fig 5B, and again, the
spectrum is quite broadband. The signal recorded by photodiode B is shown in Fig 5C,
and its corresponding power spectrum is given in Fig. 5D. Subtracting the two time-
traces results in the trace displayed in Fig. SE and shows excellent reproduction of the
bits. Finally, Fig. SF shows the optical spectrum of the transmitted signal, revealing a

narrow peak corresponding to m(¢) at 1.532um and a broader peak corresponding to
E, (z) at 1.555 um.

III. 1(C)
Another method investigated was the use of bandpass filters rather than polarizers
as filters. Once again, the purpose of the filters was to prevent light associated with m(z)

from continuing to circulate around the ring. The wavelength of the message light could
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be adjusted to ~1 nm of the central wavelength of the filter and still be successfully
“blocked”. The filter in the receiver was tuned to match the filter in the transmitter. The
electric field polarization, because no polarizer was in the ring, fluctuates very rapidly
and effectively has no polarization, and consequently, the polarization state of the
message is not important. Because the wavelengths of the message, m(t), and the

chaotic electric field, E,(¢), are still substantially different, the cross-term in the
subtraction of the photodiode signals averages to zero. Again, only |m(t)|2 remains.

Fig. 6A shows the transmitted signal, |s(+)|’, recorded at photodiode A. Its power
spectrum is shown in Fig. 6B. The signal detected at photodiode B is shown in Fig. 6C,
and its power spectrum is shown in Fig. 6D. Because the chaotic output has become
almost periodic in this example, a comparison of Fig. 6A and Fig. 6C clearly shows the
effect of the bits on the transmitted signal. However, it is still not at all obvious from
observing just the transmitted signal that a message is included. A subtraction of the two
signals is shown in Fig. 6E. The optical spectrum of the transmitted signal is supplied in
Fig. 6F. The wavelength separation in this case is much smaller than in the previous
case, and is approximately 1 nm.

1. 2(A)

The techniques discussed in section III. 1 all required the use of a filter and
required that a distinction of polarization or wavelength be made between the chaotic
electric field, E,(¢), and the message signal, m(t).. The techniques presented in this
section will demonstrate message communication without the use of filters and with the

same wavelength for the message and chaotic electric field.

18




v

Time-traces from such an experiment are shown in Fig. 7A. In this example, both
EDFA 1 and EDFA 2 are pumped by their diode pump lasers at 10 mW, a level slightly
less than twice the threshold pump power for the ring laser. This pumping results in ~ -1
dBm optical power circulating in the ring when no message is being injected. The

injected message has a power of ~-4.5 dBm and a 1553.01 nm wavelength. The first

panel, Fig. 7A, shows data taken from photodiode A (the thin line) and from photodiode

B (the thick line). As explained earlier, a subtraction of the two signals is equal to
2Re{E'T(t)-m(t)} +|m(t)|2 . Fig. 7B shows that subtraction (thin line). For comparison,

the thicker line in Fig. 7B is the message signal measured by photodiode A when the

EDFRL is turned off to remove the chaotic masking. This is equivalent to measuring just

|m(t)|2. The greater amplitude of the “decoded” message is simply the result of the cross
term 2 Re{E}(t)-m(t)}; in this case, the polarizations and phases of E(¢) and

m(t) (relevant in the cross term) have combined to improve the message reception. The
fidelity is quite good. An optical spectrum of the transmitted light is shown in Fig. 7C.
The message injection is strong enough that its optical frequency forces the EDFRL to
have the same lasing frequency--1553.01 nm.

Fig. 8 provides power spectra for the transmitted signal (Fig. 8A) and for the
signal at photodiode B (Fig. 8B); they have a very close resemblance. The narrbwly
spaced discrete spikes result from tﬁe repetitive 32-bit pattern used. The bit-rate was 125
Mbit/s; the corresponding spike is evident in both power spectra.

IIL 2(B)

We also performed experiments with message injection at wavelengths which

were not resonant with the lasing wavelength of the EDFRL. Fig 9A shows signals




measured by photodiodes A and B when the wavelength of the injected message is
1533.01 nm. In this case the EDFAs were pumped at about 85 mW, many times
threshold. This resulted in an optical power in the ring of ~ 9.1 dBm without any

- message injection. The injected message power wa's ~-3.1 dBm. The subtraction of the
traces in Fig. 9A is seen in Fig. 9B. Once again, the same pattern of bits is obtained. The
optical spectrum (Fig. 9C) shows two distinct peaks. The first of thesc_peaks (1533 nm)
corresponds to the message injection, whereas the second peak (1558 nm) corresponds to
the natural lasing wavelength of the EDFRL. The very broad linewidth is characteristic
of the EDFRL. The message light at 1533 nm stimulates the EDFRL to emit at the same
wavelength and the fraction of the light that remains in the ring continues to circulate
stimulating additional emission. Consequently, the light detected at 1533 nm consists of
a combination of the message itself plus chaotic light prduced by the EDFRL.

It was important to determine whether it would be possible simply to isolate the
message wavelength (1533.01 nm) using a bandpass filter and observe the message
directly. We performed that experiment and observed that the message was well
obscured by the chaotic laser light. Fig. 10 shows one of these measurements. The
sequence of bits is not visible even after isolating just the message wavelength. This
experiment indicates that wavelength division multiplexing may be possible, while still
using chaos to hide the information. In summary, the message wavelength can be varied
around the natural lasing wavelength of the EDFRL and chaotic communication can still

occur.

20




sy

IV. Discussion of message injection approach

All of the variations demonstrated in section III. 1 were able to consistently
recover a 125 Mbit/s digital message. Each variation uses a matched chaotic receiver to
extract the message but the variations all have limitations in their ability to mask
information. In section II. 1(A), the polarizations of E,(¢f) and m(z) are orthogonal. At
any point in the transmission channel they are both, in general, elliptically polarized. But
by using a polarization controller, it is possible to change their polarization from elliptical
to linear. Once that is accomplished, a properly oriented polarizer could remove the
masking E,(#) leaving only m(¢). Varying the polarizations of E,(t) and m(t) in time
could make this unmasking more difficult.

In the experiment described in section III. 1(B), the wavelengths of the message
and chaotic field are different, though they are polarized identically. Many optical
devices exist to isolate particular wavelengths. Those devices could be used obtain the
message without the masking. The technique described in III. 1(C) has the limitation that
m(t)and E(r)are separated by ~ 1 nm in wavelength. The same wavelength dependent ‘
filters could possibly remove E.(#) without distorting m(t) when IIL. 1(C) is used. This
might be more difficult in III. 1(C) than in ITI. 1(B) as the wavelength separation is much
smaller. To make isolating just the message wavelength more difficult, one could
imagine a filter in the EDFRL itself which allows many wavelengths of E(7)to be
transmitted, thereby making it difficult to remove all of them without removing m(¢) as
well. .One could also imagine varying the wavelength of m(¢)or transmitting m(z) as two

or more wavelengths.
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As stated earlier, chaotic communication does lend itself naturally to issues of
encryption and privacy. From that perspective, the techniques of section III. 2 are
probably to be preferred. But this method, too, has some limitations. Principally, we

were unable to control the phase relationship of the electric field and the message field.
Consequently, the cross-term, 2 Re{E;(t) . m(t)}, had to be minimized for more

consistent message recovery. Without a filter, this meant that E,(¢) had to be kept as
small as possible. The low pump powers used in section ITL. 2(A) were chosen for that
reason. Even so, the message reéovery was not consistent. This inconsistency became a
greater problem as the pump power in EDFA 1 was increased or as the wavelength of the
injected message light came closer to the resonant lasing wavelength of the EDFRL. In
section I1I. 2(B), the message wavelength was separated from the EDFRL’s natural lasing
line. In this regime, larger pump powers in EDFA 1 could be ﬁsed before the interference

term mentioned earlier becomes too large for reasonably consistent message recovery.

V. Experimental Setup and Operation Using an Intra-ring Intensity Modulator
In the experiments described earlier, consistent message recovery is difficult to

achieve because of interference effects between the chaotic light in the ring and the

injected optical message. Without a filter, the interference terrn_; 2Re{E'T(t) . m(t)},

fluctuates due to changing relative phase and polarization between E.(f) and m(r). A
new approach is taken to overcome this difficulty. In this approach, the message is

applied directly to the chaotic light in the EDFRL using an electro-optic modulator

located within the EDFRL. The message, in this approach, is a modulation rather than an
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injected lightwave; consequently, the message does not interfere with the chaotic electric
field in the EDFRL.

Fig. 11 shows a transmitter consisting of an EDFRL and a LiNBO; intensity
modulator. The erbium-doped fiber amplifier (EDFA) has a small signal gain of ~ 30 dB
and a maximum output power of 17 dBm. Its erbium-doped fiber is the active medium
for the ring laser. As before, the intensity modulator uses a waveguide Mach-Zehnder
interferometer as the basis for its operation. The modulator also acts as a polarizer
because its waveguides are polarizing. A 90/10 output coupler directs 10 percent of the
light out of the ring and into the communication channel. The remaining 90 percent of
the light continues to circulate around the ring.

In the receiver, the light is split again. The transmitted signal is directly measured
at photodiode A. The remaining light passes through a variable time-delay device. A
precision tirhe-delay is achieved using a GRIN (graded index) lens to couple light from a
fiber into free-space. The light traverses a distance, the source of the variable time-delay,
before it is incident on another GRIN lens coupler which couples the light from free-
space into fiber. By controlling the separation between the two GRIN lens couplers, the
time-delay between photodiodes A and B can be precisely controlled. For this
experiment, photodiode B measures the same signal as photodiode A, but with a time-
delay matched to within 0.1 ns of the round trip time of the EDFRL, 7.

The slowly varying envelope of the chaotié lightwave after the EDFA in the
receiver can be represented as E. The lightwave propagates through the ring and is
amplitude modulated as it passes through the modulator to create m(t)E,”wl;e;e; -n:(t) is

the message signal. Note that in this case, the message, m(t) is a scalar modulation rather
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than a vector lightwave as in the previous experiments. Ninety percent of this light
continues until it is amplified in the EDFA to createE’ = m(r)E, while the remaining
fraction is output to the receiver. The lightwave exiting the amplifier has a significantly
greater intensity, but its waveform is very similar to the input wave . For simplicity, we
write for the lightwave after the amplifier E’ = m(¢)E because the relative amplitudes of
E’ and m(7)E are not as important to the operation as is the shape of the waveform. The
shape of the waveform is only slightly distorted in passing through the amplifier dué to
noise and nonlinearities in the amplification. E’also circulates through the ring and is
modulated to produce m(t+17.)E’, and a fraction is output to the receiver.

In the receiver, photodiode B is delayed relative to photodiode A by one round
trip time, 7 ., to within an accuracy of ~ 0.1 ns. Consequently, when photodiode A is
measuring m(t + 1 ;)E’, photodiode B is measuring m(t)E. Since E’=m(?)E, a division
of the signal recorded at photodiode A by the signal recorded at photodiode B should
give m(t+ 1), thereby recovering the message from the chaotic carrier.

VI.  Results of Intra-Ring approach

Fig. 12 gives. results of such an experiment. A repeating digital message with a
32 bit length was applied to the modulator in the ring. The message had the pattern:
01111101010110011011101101001001. The recovered message shown in Fig. 12E
replicates this pattern. Figs. 12A and 12C, however, show no sign of the message. The
power-spectra of the two measured signals (Figs. 12B and 12D respectively) show many
peaks; the peak at 125 MHz corresponds to the bit-rate. That peak is also visible in the

power spectrum of the recovered message bits, Fig. 12F.
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Or;ly a small message modulation was used to obtain Fig. 12; the depth of
message modulativon that could be used is limited by the dynamics of the ring laser. If the
message modulation is too small, bit recovery is impaired because the noise may be
larger in amplitude than the communicated message. If the message modulation

amplitude is too large, it drives the laser into an unstable spiking regime. In that spiking

regime, the transmitted intensities are near zero much of the time. Because our message

is recovered through a division process, any noise present in the signal detected by
photodiode B when the signal is near zero has \;ery detrimental effects. Longer
sequences of pseudorandom bits tended to require even smaller modulation amplitudes to
prevent the spiking behavior than employed in Fig. 12.

Once an appropriate adjustment has been made, the message recovery is very
consistent because, unlike in the earlier experiments, no interference term exists to distort
message recovery. The intra-ring modulator method also has additional privacy benefits
when compared with the techniques described in section III 1. In this method, the
message is incorporated as a part of the chaotic carrier lightwave, m(t)E. Consequently,
the message cannot be separated from the chaotic electric field using optical devices such
as polarizers or bandpass filters.

As mentioned earlier, two additional factors that are important to privacy
considerations are the dimensionality of the transmitted chaotic lightwave, and the effort
required to obtain the necessary parameters for message recovery. The signal from the
transmitter EDFRL has been analyzed using a false nearest neighbors algorithm

[Abarbanel 1996]. Using 100,000 data points, the analysis indicates that the

dimensionality is high, of order 10 or greater.
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We have observed that only one parameter must be known in order to construct a

receiver capable of recovering the message. Precise knowledge of the round-trip time,

1, of the EDFRL is sufficient for message recovery. Though the nonlinear dynamics of
the coupled light field and population inversion in the EDFA of the transmitter result in
chaotic fluctuations of light intensity, the EDFA does not significantly alter a waveform’s
shape after just one pass through the amplifier. Consequently, an EDFA in the receiver
matched to the EDFA in the transmitter is not actually necessary to recover the message.
Having only one parameter, 7 ., to be matched limits the potential privacy of the
communication method. The same reasoning can be applied to the methods described in
section IT. There, too, the matched EDFA is unnecessary, though it was included in the

experiments.

VIL. Modified Intra-ring Method

A new configuration that requires multiple matched parameters in the receiver
and allows consistent and clear message communication is shown in Fig. 13. An
additional outer-loop is added to the solitary EDFRL in the previous system. 'i‘he outer-
loop e:.(tracts a portion of the light in the inner-ring, delays it relative to the light in the
inner ring, and reinjects it. With just a small amount of reinjected light, the spiking |
behavior observed with larger modulation amplitudes in the previous experiment is
eliminated. The transmitter also becomes more stable. Unlike the consistently chaotic
output of the previous experiment, the transmitter is now only interrnittehtly chaotic

without message modulation.
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The outer loop in the transmitter consists of a variable time delay, another EDFA,
and a polarization controller. It is approximately 34 m in length, while the inner-ring is
approximately 42 m long. The variable time delay is created using a pair of Graded
Index (GRIN) collimating lenses separated by an adjustable free-space distapce. One
GRIN lens couples light from the optical fiber into air, and the other GRIN lens couples
the light back into the fiber. The EDFA in the outer loop is used to control the relative
amplitude of the light that is sent back into the inner ring. The polarization controller is
used to change the relative polarization and phase between light in the outer-loop and
light in the inner-ring.

Thé outer loop in the receiver system has the same length as the outer loop in the
transmitter system. Its EDFA and polarization controller have the same function as their
counterparts in the transmitter. An additional variable time delay has been introduced
into the receiver’s main-line to match the time delay between photodiodes A and B to the
round trip time of the inner ring of the transmitter. |

The slowly varying envelope of the chaotic lightwave in the transmitter, just after
EDFA 1, can be represented as E,.. The lightwave is split upon reaching the 90/10
coupler with ten percent sent into the outer loop and ninety percent remaining in the inner
ring. At the 50/50 coupler, the light in outer loop is added to the light in the inner ring

giving Ey,, +E,,,,. The sum passes through the modulator and exits as
m(t)(Ey, +Eq,, ). Ten percent of this signal is output to the communication channel.

The remaining ninety percent continues to circulate in the transmitter. It passes through

EDFA 1 and is amplified to produce E; = m(t)(E,,, + Ey,,,)--again, we disregard the

amplification for simplicity, and instead focus on the shape of the envelope. E;

27




')

propagates as above through the transmitter, ultimately sending m(t+ 1)(E'T,.,‘ + E;.,m,) to
the communication channel, where 7 is the round trip time for light in the inner ring.

In the receiver, the transmitted signal is divided as before between photodiode A
and pﬁotodiode B. Photodiode A measures the transmitted signal directly. Light sent
toward photodiode B is split and recombined in such a way as to recreate the dynamics of
the transmitter. The length of the outer loop in the receiver has been matched in length to

the outer loop of the transmitter. The transmitted lightwave Eg = m(t)(E,, +E,,,,) is

split and recombined to become E, +Eg, .. Experimentally, the length of the outer‘ loop

in the receiver is matched to an accuracy of +3 cm. Thus,

[Ega| = [Ex,| and [Eq,,

= ]Em,|, but the relative optical phase between E,, and E,_,,is
uncorrelated to the relative phase of E,, and E; . The time delay between photodiode
A and photodiode B has also been matched to an accuracy of 0.1 Ans.

Recovering the message is accomplished by dividing the signal measured at
photodiode A by the signal measured at photodiode B. The time-delay between
photodiode A and photodiode B has been adjusted to ensure that photodiode A measures
the intensity

2

Im(t +7z )(ETin + ETour)

3

? +2E, [E o

Im@+7)f (IET,.,,|2 +|Eqou, cos O cos Py ),

while at the same time, photodiode B measures
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? +|Egou” +2[Ex,

Rout

(Egin + Egou )I2 = (lEm,. Eg,..|cos 8, cos gy ) 4)

6x 1 and ¢ ; are the relative polarization angle and relative phase angle between
Egq, and Ep . respectively. If cos6y cos @y, = cos6y cos @y, a simple division
obviously gives |m(t + 7T, )|2 . However, we have already explained that thé relative phase
in the receiver, @g, is not correlated with the relative phase in the transmitter, ¢;. An
inherent property of the transmitter allows this problem to be overcome.

The transmitter consists of two coupled erbium doped fiber ring lasers. One of
the ring lasers is the inner ring. The second ring laser is formed by the perimeter of the
transmitter including the outer loop. The two lasers have limited flexibility to adjust their
lasing modes to maximize the intensity that passes through the modulator. The optimized
laser modes possess a fixed value for cos 65 cos ¢, when they are recombined. Although
cos 6, cos ¢, =1 maximizes the intensity when the lightwaves from the inner ring and
outer loop are recombined, that particulair polarization and phase relationship may not be
optimal for passing through the modulator, which also acts as a polarizer. The fixed
value cos 6, cos @, that results from optimization can be altered by adjustment of the
polarization controller in the outer loop. Using the polarization controller in this way,
initial observations suggest rough values for cos 6 cos ¢ as low as ~ 0.3, or as high as 1.

Although the value of cos 6, cos ¢y is relatively stable, the transmitter’s lasing
wavelength fluctuates on a time scale of ~ 5 ms. In the receiver unit, the wavelength
fluctuation ensures that cos 6, cos ¢ also fluctuates. The polarization controller in the

outer loop can fix the value of cos 6, to any value, but the relative phase angle, ¢, is
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free to fluctuate as the wavelength changes. Unlike the transmitter, the receiver has no
feedback mechanism to fix ¢,. Figure 14 shows two 100 ms time traces of signals
detected by photodiode A and photodiode B. The transmitter was unmodulated during
this experiment. The transmitted signal, because cos 6, cos ¢y is fairly constant, shows
very little variation in amplitude. In contrast, the receiver signal makes significant jumps
corresbon.ding to fluctuations of ¢, due to changing wavelength in the transmitted signal.
The relative phase angle between lightwaves in the main-line and outer loop of the
receiver changes if the wavelen'gth of those lightwaves changes. A close examination of
the figure shows that the amplitude of the transmitted signal also changes slightly at each
of these wavelength changes.

If cos 6, is set to O using the polarization controller, the fluctuations of ¢ do not
affect the intensity. With this setting for cos 6, message recovery is consistent even

when cos 6, cos ¢, # 0. This somewhat surprising result can be understood by observing

2

. . . 2
that [Eq;,|Ex,,| s a function of time very closely resembles the function Egi| +|Etou] -

To observe this using experimental data, light from the main-line and outer loop in the
receiver were directed into photodiodes rather than combined in a coupler. The relative
lengths of the arms was the same as for the experiment (again + 3 cm). One photodiode

? while the other photodiode (outer-loop) measured IE;le .

(main-line) measured [Ej,,
This data allows us to calculate [E,|" +[Eg..| + 2'|Eu,.,l |E .| and present its time-series
in Fig. 15A. Fig. 15B shows a time-series corresponding to 2[]Em,,|2 +|ERM|2].

To obtain an estimate for the magnitude of the message recovery errors produced

’ +'Elloul ’ +2lERiu

by having cos6, =0, we divide the time-series |E,‘,.,l Egou
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(maximizing the cross-term in (3), setting m(t+ 1) =1, and using the approximation

[E

Rin.out| = lEmM ) by the time-series corresponding to Z[IER,.,, ? +|E,w|2] (proportional

to (4) when cos6; =0). The result is shown in Fig. 15C. Any deviation from a value of

lisa message recovery error resulting from the zero cross-term in thq denominator. A
comparison of the magnitude of these errors to the amplitude of a typical digital message

(as shown in Figs. 16-19) shows that they are small enough that message reception is not

impaired even when the cross-term is maximized in (3), as in this case.

VIII. Results of the Modified Intra-ring Method

Results from this technique, using a communication channel ~ 4 m in length, are
shown in Fig. 16. A message consisting of pseudorandom sequence of 100,000 bits at
125 Mbit/s was communicated in this experiment. Fig. 16A shows 400 ns of the signal
transmitted through the communication to the receiver and detected at photodiode A.
Fig. 16C shows the signal simultaneously detected by photodiode B. Fig. 16E shows the
division of the signal shown in Fig. 16A by the signal in Fig. 16B. The recovered bits are
clear in Fig.16E, but vthey are indiscernible in Figs. 16A and 16C. The power spectra of
the signals are shown in the panels on the right. Fig. 16B shows the power spectra of the
signal shown in Fig. 16A. The 125 MHz frequency peak, corresponding to the bit-rate,
appears as just one of many small peaks in the spectrum. The same is true for the power
spectra of the signal recorded by photodiode B, shown in Fig. 16D. Finally, Fig. 16F
shows the power spectra of the recovered bits. Only one peak, at 125 MHz, is significant.

Initial tests show very consistent recovery of the data. Bit-error-rates of <10~

are routinely achieved. The BER may be significantly lower, but memory limitations on
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our digital oscilloscope limit the number of message bits that can be acquired for
analysis. Occasionally, however, the transmitter “bursts” into an unstable, high
frequency chaos. The amplitude and frequency of these bursts can be greatly diminished
by limiting back-reflection from the open leads of the waveguide couplers.
Environmental vibrations such as tapping on the téble seem to induce bursting as well.
During these intermittem bursts, the BER can be much higher, though in most instances,
the error produced is small enough that message recovery is not impaired at all.

In order to recover the communicated message, the receiver must be "tuned" to
the dynamics of the transmitter. This requires matching certain transmitter parameters in
the receiver. In this system, the configuration, time-delays, and relative amplitudes for
the lightwaves in the main-line and outer loop must be properly matched in order to
recover the message. Fig. 17 shows the effect of various parameter mismatches.

Fig. 17A shows successful recovery of a repeating pseudorandom 40-bit message
sequence at 125 Mbit/s using the same experimental parameters as used to obtain the data
~ for Fig. 16. The proper sequence is clearly recovered. The other panels represent
attemptéd recovery of this message with just one parameter mismatched. Fig 17B shows -
an attempted recovery of the same message, but without using the outer loop in the
receiver. The message is very distorted. Fig. 17C shows recovery without the main-line
part of the receiver. Again, the message is greatly distorted. Fig. 17D shows recovery of
the message with an outer loop that is one meter too long. When the time-delay between
photodiode A and photodiode B is incorrect by just 1 ns (8 inches of optical fiber) the
message is also severely distoi'ted, as shown in Fig. 17E. Fig. 17F demonstrates that the

relative power levels of E,, and E,, must be properly set in order to accurately recover
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the message. For Fig. 17F, the pump power on EDFA 3 was adjusted from its optimal
setting of 21 mW (used to produce the data shown in Fig. 16) to 100 mW.

To determine this method’s viability as a communication scheme, it is also
impoﬁmt to investigate the effect of long communication channels on the technique.
With this in mind, an experiment was performed using a communication channel
consisting of another EDFA (to compensate for channel losses) followed by 35 km of
ordinary single mode fiber. As in Fig. 16, a repeating message consisting of a sequence
of 100,000 pseudorandom bits at 125 Mbit/s are communicated. Fig. 18A shows the
transmitted signal as recorded at photodiode A after passage through the longer channel.
Its power-spectrum is shown in Fig. 18B. Fig. 18C shows the signal measured by
photodiode B. Its power-spectrum is shown in Fig. 18D. The power spectra of the
signals measured by the photodiodes show peaks at 125 MHz corresponding to the 125
Mbit/s bit-rate, but these peaks are not obviously conspicuous. Fig. 18E shows the
recovered message. The message does not reveal any significant distortion caused by the
long communication channel. Fig. 18F gives the power-spectrum of the message.

The bit-rate in all of these experiments is limited by the bandwidth of the
photodiodes (125 MHz 3-dB roll-off), but a doubled bit-rate can be obtained without
introducing higher frequencies components by using a non-return-to-zero (NRZ)
communication scheme rather than the return-to-zero (RZ) communication used thus far.
Fig. 19 shows results for communication of an NRZ 100,000 bit pseudorandom sequence
at a rate of 250 Mbit/s. The communication channel for this experiment consisted of an
EDFA and 38 km of dispersion-shifted (dispersion zero at 1550 nm) fiber. Fig. 19A

shows the transmitted signal measured by photodiode A. Fig. 19B shows its power-
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spectrum. Fig. 19C shows the signal measured by photodiode B, and Fig. 19D shows its
power-spectrum. Fig. 19E shows recovery of the 250 Mbit/s NRZ message. The
message’s power spectrum is shown in Fig. 19F.

An eye-diagram illustrating the quality of this communication is shown in Fig. 20.

"The eye is open indicating accurate recovery of the 250 Mbit/s signal. The slope of the

lines around the eye result from the slew-rate of the photodiodes.

IX. Discussion of the Modified Intra-ring Method

We have demonstrated consistent and cléar optical chaotic communication using a
modulator in the transmitter to encode the message. Bit-rates of 125 Mbit/s and 250
Mbit/s were demonstrated. Taking full advantage of the large bandwidth available in the
optical system would permit even faster rates, but these experiments were limited by the
bandwidth of our photodiodes (125 MHz 3-dB rqll-off) and oscilloscope (1 GS/s). The
method works well even over long communication channels (~35 km), and in both
ordinary and dispersion-shifted fibers.

It also offers enhanced privacy compared to the other methods discussed in this

paper. Asshown in Fig. 17, accurate recovery of the message requires multiple matched

- parameters in the receiver. The geometrical configuration of the receiver must be the

same as in the transmitter. The lengths of the fiber in the outer loop and the time-delay
between photodiode A and B must be matched fairly precisely. Finally, the relative
power levels of Eg,, and E; ,, must be properly matched to the power levels in the
transmitter. This method suggests that more complicated geometries and systems
requiring additional parameters for message recovery may also be possible to construct

using an EDFRL as a basic element.
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Another privacy consideration is dimensionality. As mentioned earlier in this-
paper, it has proved possible to recover a message from certain lower-dimensional (3
dimensional) chaotic cdmmunication systems [Short, 1994(a); Short, 1994(b); Perez &
Cerdeira, 1995]. A communication method utilizing higher dimensional chaos is likely to
provide enhanced privacy. The transmitted signals produced in this experiment, as seen
in Fig. 16, have also been analyzed using a false-nearest-neighbors algorithm [Abarbanel,
1996). Using 100,000 points acquired at 1 GS/s, the algorithm indicated that the
dimensionality of the attractor is of order 10 or higher, as seen in Fig. 21. This figure can
be compared to the false nearest neighbors data (Fig. 2) for the transmitted light from an
unmodulated EDFRL. The increase in the dimensionality can probably be attributed to
the fact that the pseudorandom message modulation drives the chaotic dynamics of the
transmitter in this experiment. The nonlinear operation of the transmitter transforms the
digital message into a high-dimensional chaotic waveform. The shape of the chaotic
carrier waveform at any time is a nonlinear time-delayed function of the previous digital
message bits.
X. Conclusion

The experiments described in this paper trace the development of several
techniques for dynamical coding and cryptography using time-delayed optical systems.
Our goal has been to introduce the use of time-delayed systems for all-optical chaotic

communication at high speeds through standard single-mode optical fiber, using erbium

~ doped fiber ring lasers at 1.5 microns. Our demonstrations include communication at up

to 250 Mbits/s through 35 km of single-mode fiber. These results are limited at present

only by the speed of the detection electronics and not by the bandwidths or dynamics of
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the optical systems. We hope to stimulate theoretical and experimental studies of
dynamical encoding and decoding with time-delayed systems.

There remain many open questions to be answered regarding the information
theoretic aspects of the dynamical encoding and cryptographic processes outlined here.
Estimates of channel capacity and bit-error rates, robustness of the methods against noise
and the development of error control and correction methods are all topics that need to be
addfessed before such systems find practical applications in the real world. Finally, as
we have xﬁentioned earlier, the question of security of chaotic communication techniques
is an important one that needs to be addressed by the proper cryptographic methods of

analysis. We hope our paper will stimulate research in these new and fertile areas.
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Figure Captions
Figure 1: Experimental system for optical chaotic communication consisting of three
parts. In the message modulation unit, cw laser light is intensity modulated to produce a
message signal consisting of a series of digital bits. The message signal is injected into
the transmitter where it is mixed with the chaotic lightwaves produced by the erbium-
doped fiber ring laser. The message, now masked by the chaotic light, propagates
through the communication channel to the receiver where the message is recovered from

the chaos.

Figure 2: Fig. 2A shows the transmitted signal measured by photodiode A when no
message is injected into the transmitter. Fig. 2B shows a time-delay-embedding plot of
the data in Fig. 2A; the lack of structure indicate’s that the data is not low-dimensional.
Fig. 2C shows the signal simultaneously detected by photodiode B. The signals recorded
by the phdtodiodes are clearly synchronized, as shown in Fig. 2D. Fig. 2E gives the
results of a false-nearest-neighbors analysis. It indicates a dimension of ~8 for the

dynamics of the transmitted signal.

Figure 3: Fig. 3A shows the transmitted signal measured by photodiode A when a
message is injected into the transxﬁitter. Its power-spectrum can be seen in Fig. 3B. Fig.
3C shows the detected signal at photodiode B, and its power spectrum is also given by
Fig. 3;D. Subtracting the signals shown in Fig. 3A and Fig. 3C results in the recovered

message shown in Fig. 3E. An optical spectrum is shown in Fig. 3F revealing a single
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peak. Fig. 3F demonstrates that both the message and chaotic light share the same

wavelength.

Figure 4: A comparison showing the quality of the message recovery. Fig. 4A shows a
portion of the message directly detected at photodiode A when the ring laser is turned off,
ie. E.(1)=0. No chaotic encryption is used. Thevpower-spectrum of the directly
detected message is shown in Fig. 4B. The same message recovered from the chaotic
transmitted signal, i.e. E,(f) #0, is shown in Fig. 4C. Fig. 4D shows the power spectrum
of the recovered signal. The recovered message is somewhat degraded but still

decipherable.

Figure 5: Fig. 5A shows the transmitted signal measure by photodiode A, while Fig 5C
shows the signal measured simultaneously by photodiode B. Their power-spectra are
given in Figs. 5B and 5D respectively. Again, subtraction of the two time-traces reveals
the message, showfx in Fig. SE. An optical spectrum, Fig. SF, shows that the message

light and chaos have different wavelengths.

Figure 6: Figure 6A and 6C show simultaneous signals measured by photodiodes A and
B respectively. Fig. 6A’s power-spectrum is shown in Fig. 6B, and Fig. 6C’s power-
spectrum is given in Fig. 6D. Subtracting the sighal shown in Fig. 6C from the signal
shown in Fig. 6A gives the recovered message shown in Fig. 6E. In Fig. 6F, an optical

spectrum shows that the wavelengths are not the same, but are much closer than they had

been in the experiments performed for Fig. 5.
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Figure 7: Fig. 7A shows both the transmitted signal measured by photodiode A (thin-
line) and the signal measured by photodiode B (thick-line). The thick-line in Fig. 7B is
the meésage signal directly detected by photodiode A when the transmitter ring-laser is
turned off, and is included to verify that the message recovered from the chaos (thin-line)
is indeed correct. An optical spectrum of the transmitted signal is shown in Fig. 7C to

show that both the message and chaotic light have the same wavelength.

Figure 8: Power spectra corresponding to the signals measured in Fig. 7A. Fig. 8A is the
power spectrum for the transmitted signal recorded at photodiode A. Fig. 8B shows the

power spectrum for the signal measured by photodiode B.

Figure 9: Fig. 9A once again shows both the transmitted signal measured by photodiode
A (thin-line) and the signal measured by photodiode B (thick-line). Fig. 9B shows the
results of subtracting the thickline from the thin-line. Fig. 9C gives an optical spectrum
showing the lasing wavelengths of the EDFRL. The message injection is occurring at a

wavelength of ~1.533 um.

Figure 10: The transmitted signal after passing through a 1 nm bandpass filter at

1.533um. The chaotic light at this wavelength still masks the message.

Figure 11: Experimental setup for the in‘tra-ring modulator approach. An intensity
modulator is used to encode a digital message onto chaotic lightwaves produced by the

erbium-doped fiber ring laser. Chaotic light from the ring travels to a receiver where a
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precise time-delay between the photodiodes allows for the message to be recovered from

the chaos..

Figure 12: Fig. 12A shows the signal from the transmitter as recorded by photodiode A.
Fig. 12 C is the signal recorded by photodiode B in the receiver. A division of the two
signals recovers the message as shown in Fig. 12E. Panels B, D, and F show the power
spectra of the signals shown in A, C, and E respectively. Note that the 125 MHz peak in
Figs. B and D is not the most prominent peak. In Fig. 12F, a peak at the bit-rafe of 125

MHz is clearly visible.

Figure 13: Experimental setup of the improved intra-ring modulator approach. An
erbium-doped fiber ring laser with an additional outer loop is used as a transmitter.
Again, an intensity modulator is used to encode a digital message onto the chaotic optical
carrier. The carrier and message propagate to a receiver constructed to reproduce the
dynamics of the transmitter. Proper configuration, time-delays, and power levels in the

receiver allow recovery of the message.

Figure 14: The more level signal is the transmitted signal detected by photodiode A
when there is no intensity modulation in the transmitter. The fluctuating signal was
detected by photodiode B. The fluctuations illustrate the very large effect that the
fluctuating phase angle ¢, has on the signal measured at photodiode B. In the
experiments, however, the polarization angle 6, was adjusted to eliminate the effect of

the ¢, fluctuations.



iw

Figure 15: The error resulting from setting 6, =0 in (4) when the crossterm in (3) is not

equal to zero is shown to be small enough that it does not interfere with message

recovery. Fig. 15A shows the time-series corresponding to

IERinr +|Ekout|2 + 2|Ellin

E Rowt

. Fig. 15B shows time-series data corresponding to
2({Ena|” +[Enu|'). Dividing the data in Fig. 15A by the data in Fig. 15B gives an

estimate for the size of the error that results from eliminating the cross-term in (4) by
setting 6, =0. The result of that division is shown in Fig. 15C. Comparing Fig. 15C

with Fig. 16E shows that such small errors will not hinder message recovery.

Figure 16: This figure shows successful recovery of a message signal from its chaotic
carrier. The message signal consisted of a sequence of 100,000 pseudorandom bits
transmitted at a rate of 125 Mbit/s. Fig. 16A shows the transmitted signal detected at
photodiode A. It's power spectrum is shown in Fig. 16B. Note that a small peak is
visible at 125 MHz corresponding to the bit-rate. The signal detected at photodiode B is
shown in Fig. 16C. Its power spectrum is shown in Fig. 16D. Again, a small peak is
visible at 125 MHz. the recovered message (formed by a division of the signals at
photodiodes A and B) is shown in Fig. 16E. Fig. 16F shows the power spectrum of the
recovered bit sequence, with a cleQr peak at 125 MHz. The message itself is not
discernible in either of the signals shown in Figs. 16A and 16C, but the recovered

message is very clear.
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Figure 17: Recovery of the message requires that certain parameters in the transmitter be
matched in the receiver. Fig. 17A shows recovery of the message with all appropriate
parameters matched. The other panels show attempted recovery with just one
mismatched parameter. Fig 17B shows attempted recovery with a geometrical
configuration in the receiver that lacks the outer loop. In Fig. 17C, recovery is attempted
without the main-line part of the receiver. An extra meter of optical fiber is used in the
outer loop for the attempted recovery shown in Fig. 17D. Fig. 17E shows attempted
recovery when the time-delay between photodiode A and B is mismatched by just 1 ns

(£20 cm of optical fiber). Fig. 17F shows recovery when the amplitude of ’E,m, is too

large when it is recombined with Eg,, .

Figure 18: Successful recovery of a message after propagation through 35 km of
ordinary single-mode optical fiber. Fig. 18A shows the transmitted si gnal detected at
photodiode A. The signals power spectrum is shown in Fig. 18B. A small peak at 125
MHz corresponding to the 125 Mbit/s bit-rate is visible. Fig. 18C shows the signal
measured by photodiode B, and its power spectrum is seen in Fig. 18D. Fig. 18E shows

the clearly recovered message. Its power spectrum is shown in Fig 18F.

Figure 19: Successful recovery of a non-return-to-zero (NRZ) message at 250 Mbit/s
éfter propagation through a 38 km dispersion-shifted (1550 nm dispersion zero) fiber. the
transmitted signal detected by photodiode A is shown in Fig. 19A. Fig. 19B shows the
power-spectrum of the transmitted signal. No peaks are visible correspondiné to the bit-

rate of the message. Fig. 19C shows the signal recorded by photodiode B after passing
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through the receiver. Its power spectrum is shown in Fig. 19D. The recovered message

bits are shown in Fig. 19E. Their power spectrum is shown in Fig. 19F.

Figure 20: An eye-diagram showing the quality of the recovery of NRZ digital bits after
propagation through 38 km of dispersion-shifted fiber. The eye-diagram is open,
indicating good message recovery. The slew-rate of the photodiodes is evident in the

slope of the intersecting lines. Clearly, the bit-rate is limited by the detection equipment.

Figure 21: False-nearest neighbors data showing the transmitted signal to be high-
dimensional, of order 10 or greater. The high-dimensional nature of the chaos can be
attributed to the fact that the pseudorandom message modulation signal drives the chaotic

dynamics of the transmitter.
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Abstract

Accurate measurements of fluctuating states of polarization (SOP) require determinations of the Stokes parameters on
shorter time-scales than those of the fluctuations. For light sources that generate very rapid polarization and intensity
fluctuations, such as erbium-doped fiber ring lasers (EDFRLS), conventional polarization analyzers are not sufficient. We
describe a technique for measuring rapidly fluctuating states of polarization using 2 fiber-optic polarization analyzer. SOP
fluctuations at rates up to 125 MHz can be accurately measured, a rate limited by the detection equipment (photodiodes and
oscilloscope). Using the polarization analyzer, experimental measurements are made which provide new insights into the

rapid polarization dynamics of an EDFRL. © 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 07.60.Fs; 42.65.5f; 42.55.Wd; 42.25.Ja

Keywords: Polarimetry; Erbium-doped fiber lasers; Laser polarization dynamics; Optical chaos; Instabilities

1. Introduction

Devices to specify the state of polarization (SOP)
of light have been commercially available for many
years, but these devices are not designed to measure
light with rapid fluctuations of its SOP. Indeed, these
devices typically require stable SOPs for time-scales
from milliseconds to seconds. Accurate measure-
ments of some optical phenomena, however, require
tracking a fluctuating SOP on much faster time-
scales. The polarization analyzer described here is

* Corresponding author. Tel.: + 1-404-894-6819; Fax: +1-404-
894-9958; E-mail: rajarshi.roy@physics.gatech.edu

capable of measuring fluctuating SOPs with time-
scales as short as several nanoseconds. Even faster
measurements are conceptually possible; the band-
width of the photodiodes (3-dB roll-off at 125 MHz)
ultimately limits the speed of the SOP fluctuations

that can be accurately measured.

In Section 2, we present an overview of the
theory of optical polarization that will assist the
reader in understanding the description of the appara-
tus and the interpretation of the experimental results.
Section 3 briefly describes the experimental appara-
tus and technique while focusing on experimental
results and measurements. Specifically, the polariza-

 tion dynamics of chaotic and self-pulsing light from

an erbium-doped fiber ring laser (EDFRL) are mea-

0030-4018,/99/ - see front matter © 1999 Published by Elsevier Science B.V. All rights reserved.

PIl: $0030-4018(99)00163-7
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Fig. 1. Diagram of experimental apparatus. During the calibration process, light from the tunable diode laser (TDL) is transmitted to the
apparatus. Once calibrated, light from an EDFRL is sent to the apparatus for measurement of the Stokes parameters. The variable attenuators
(VATs) placed before the photodiodes are intended to prevent saturation of the photodiodes. The polarization controllers (PCs) consist of a
sequence of three waveplates and allow light from any input polarization to be adjusted to any output polarization. The polarizers (Pol.)
ensure that the photodiodes measure only one component of the light. All of these free-space optical elements are placed between coupled
graded-index (GRIN) lenses, which allow the light to be coupled out of and back into fiber. The digital sampling oscilloscope (DSO)
records the intensities measured by the photodiodes.

sured. Section 4, the conclusion, discusses the advan- nal components, E(t) = E,(1) + E(¢), where

tages and features of this technique. A more thor- N

ough description of the apparatus and the calibration E,(t) = iEq,(#)cos[ kz — wt + (1 )] (1)

procedures is provided in Appendix A. and :

2. Theoretical foundation E(1) on,(t)cos[kz wr ay(t)]. @

In these equation E,, and E,, are both real

For a quasi-monochromatic lightwave, the electric numbers. The phase of each component is given by

field, E, can be described as the sum of two orthogo- &y

Fig. 2. This figure is intended to illustrate the accuracy of our measurement of the SOP. The light analyzed is produced by the EDFRL and
possesses rapid intensity and polarization fluctuations. A polarizer at 45° has been placed in the calibration area. Thus, the ideal
measurement of the SOP should, in spite of the intensity fluctuations evident in (c), give 5= (1,0,1,0). The experimental measurement, as
indicated by (d-f), is very close to this ideal. The DOP shown in (b) is close to 100%, as one would expect for light that passes through a

polarizer.
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A common way of specifying the SOP of a
lightwave is to determine its Stokes parameters. As
described in Refs. [1,2], the four Stokes parameters
for such a lightwave can be defined as

So=(Eq.) +(Eg,))

S, = Eq.) - (Ej,)

S, = (2Ey, Ey,cos( €)) 3)
S, = (2E,, Eysin( £)),

where £ is just the relative phase, &, — £,, between
the two electric field components. Clearly, §, repre-
sents just the total intensity of the light. S, reflects a
tendency for the light to have its energy concentrated
along either the x or y axes. S, and S, depend on
the relative phase between these two components.

The { ) expectation-value brackets must be in-
cluded in Eq. (3) because it is possible that the
arguments within them can fluctuate on time scales
that are shorter than the time during which the
measurement is made. To fully measure the time-
evolution of a lightwave’s SOP, it is necessary to use
a polarization analyzer that operates on time-scales
as fast or faster than the SOP fluctuations. For
example, sunlight is called unpolarized (S, = S, = S,
= () because any real polarization analyzer averages
over sunlight’s very rapid and statistically random
polarization fluctuations. Yet, the electric field of a
ray of sunlight at any point in space and time must
possess an amplitude, orientation, and phase. While
the time-scales for the SOP fluctuation of sunlight
are much too fast to be measured with the technique
presented here, some optical phenomena which were
previously too fast to be fully measured using con-
ventional polarimetry can now be observed. In some
modes of operation, the polarization dynamics of an
EDFRL occur on time scales of several nanoseconds.
Such time scales are long enough to permit full
measurement of the EDFRL polarization dynamics
using the high-speed polarization analyzer presented
here.

Light that is neither completely unpolarized nor
completely polarized is called partially polarized.
Partially polarized light can be thought of as the
superposition of two components: a completely po-
larized lightwave and a completely unpolarized light-
wave [3]. A convenient measure of the relative pro-
portion of polarized to unpolarized light is the De-
gree of Polarization (DOP). The formula for the
DOP is given by

S} + 83+ 53
— ®

where 0 < DOP < 1. Because of the () brackets in
Eq. (3), the calculated DOP (for a lightwave with
fluctuating SOP) is affected by the speed with which
the Stokes parameters can be measured.

For convenience, all of the Stokes parameters can
be normalized by dividing them by S,. For the
remainder of the paper, these normalized Stokes
parameters will be written in lower-case type. With
this simplification, a normalized Stokes vector for
unpolarized light is simply given by 5'= (1,0,0,0).
Linearly polarized light oriented along the X-axis
becomes 5= (1,1,0,0), etc. With these normalized
Stokes parameters, Eq. (4) can be rewritten as

DOP = (s2+s2 +33)"/". (5)

The Poincaré sphere [3], originally introduced by
Poincaré in 1892, is a convenient way to visualize
the SOP of a lightwave. The sphere is placed at the
center of a three-dimensional cartesian coordinate
system s, 5, 53, where the horizontal plane is defined
by s, and s, axes, and the vertical direction is
defined by the s;-axis. For a particular lightwave
with DOP = 1, the values for the three Stokes pa-
rameters s,, S,, and s; can be plotted on the surface
of the sphere with unit radius. Any point falling on

1/2

DOP =

‘the equator is linearly polarized (because s3=0),

and any point falling on a pole is circularly polar-
ized. Thus, the latitude of a particular point gives an
indication of the relative elipticity of the lightwave’s

Fig. 3. Light directly from the EDFRL is analyzed. Unlike the experi

ment described in Fig. 2, no polarizer was present in the calibration

area. This means that all of the polarization and intensity fluctuations produced by the EDFRL are measured directly. (a) Clearly shows that
the polarization of the light tends to fluctuate in a somewhat localized area on the Poincaré sphere. The relatively low DOP shown in ()]
indicates that these fluctuations are actually faster than can be observed with even the technique used here.
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SOP, while the longitude provides information about
the orientation of the ellipse.

In this three-dimensional space, the distance from
the origin to a point (s, s, §3) is, from Eq. (5),
equal to the DOP. Thus, the radius of a partially
polarized lightwave will be < 1. In the experimental
results described in this paper, the DOP of the
measured light may fluctuate in time from much less
than one to very nearly one; even so, it is still
convenient to use the Poincaré sphere representation
to visualize the SOP. To do so, the Stokes parame-
ters of only the completely polarized component of
the partially polarized lightwave are plotted on the
Poincaré sphere as before. Equivalently (as in Figs.
2-6), the normalized points (s,/DOP, s,/DOP,
s,/DOP) are plotted instead of (s, s,, s3) so that all
points, regardless of DOP, will lie on the unit sphere.

3. Experiments

Light to be analyzed propagates from its source to
the polarization analyzer in . standard single-mode
optical fiber. As shown in Fig. 1, a graded-index
(GRIN) lens in the calibration area is used to couple
the light from the fiber and into a collimated free-
space beam. A polarizer or A/4 plate is used in this
free-space area during calibration, but during SOpP
measurement, this area is empty. A second GRIN
lens is used to couple the collimated beam back into
optical fiber. After passing through the calibration
area, the light is split by optical couplers into four
paths. Each of the four lightwaves passes through
some free-space optical elements before they are
measured by the photodiodes. Three of the paths
include a polarization controller (PC), polarizer
(Pol), and variable attenuator (VAT) to prevent
saturation of the photodiode, while the fourth in-
cludes just an attenuator. Through a calibration pro-
cess, described in greater detail in Appendix A, the
Stokes parameters of light in the calibration area can

be determined in a unique way from the intensities
measured by the photodiodes (I, I, 1, and 1).

The light source for the experiments that follow is
an EDFRL, as shown in Fig. 1. This EDFRL consists
of 17 m of erbium-doped fiber (the active medium)
with its ends connected together by a length of
ordinary single-mode fiber. A 90/10 coupler in the
ring couples approximately 10% of the light out of
the ring to be analyzed. Pump diodes with a 980 nm
wavelength are used to create the population inver-
sion. These pump diodes are operated at around 100
mW optical pump power, many times the pump
power of the first lasing threshold. Two optical
isolators, one on either side of the erbium-doped
fiber, ensure unidirectional propagation of light in
the ring. A mandrel-type fiber-optic polarization con-
troller is used inside the ring to control the type of
dynamics that are observed at the output. The total
length of fiber in the ring is about 37 m.

Though all of the fiber in the EDFRL is single-
mode fiber, two orthogonal polarizations can propa-
gate simultaneously in an EDFRL. These polariza-
tions can interact nonlinearly through third-order
nonlinearities of the fiber medium, and both polariza-
tions are nonlinearly coupled to the population inver-
sion. EDFRLs are well-known to generate light hav-
ing rapid (many GHz) and chaotic fluctuations in
output intensity, and some investigators have re-
ported observations of polarization dependent fluctu-
ations on these fast time scales as well [4]. Addition-
ally, a self-pulsing regime can be observed which is
the result of at least partial mode-locking between
the thousands of very closely spaced longitudinal
modes present in the laser. Several laser instabilities
which may contribute to the chaotic intensity dynam-
jcs as well as the self-pulsing behavior are described
by van Tartwijk and Agrawal in Ref. [S]. Attempts to
understand the ‘origin of the self-pulsing behavior

“and its relation to the Risken—-Nummedal-Graham—

Haken instability are made in Refs. [6,7} In the
paper presented here, the polarization dynamics of

Fig. 4. Light from an EDFRL in a self-pulsing regime is analyzed. (c) Shows that the pulses rise out of a constant intensity background.
(d—f) Show the manner in which the Stokes parameters ‘switch’ between two values in synchrony with the pulses. (a) Clearly shows that the
light is switching between two approximately orthogonal polarization states. (b) Shows that the DOP of the light is also switching between
two values. During the pulses, the light is almost completely polarized, whereas during the interval between the pulses, the light is much less
polarized. The changing values of the DOP could not have been observed without a measurement of all of the Stokes parameters.
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the chaotic intensity fluctuations and of the self-puls-
ing behavior are observed using the high-speed
polarization analyzer.

Data illustrating the accuracy of the experimental
method is shown in Fig. 2. To obtain this data, light
from an EDFRL was passed through a polarizer
oriented at 45° from the x-axis in the calibration
area. The normalized Stokes parameters for such a
situation are 5= (1,0,1,0). Any deviation from these
parameters in the experiment is a measure of experi-
mental error, such as those which may occur during
the calibration process. For example, the polarizer in
the calibration area may not be aligned at precisely
the correct orientation. Additional errors in this ex-
periment may result from the fact that the photodi-
odes in this experiment are not identical. Their am-
plifiers may respond differently to the same mea-
sured signal. Finally, small changes in temperature
or fiber stress can lead to changes in the fiber
birefringences. These changes result in a calibration
drift that reduces the measurement accuracy over
time. From Fig. 2, it is clear that the measurement
errors are reasonably small, even when measuring a
signal whose intensity fluctuates rapidly and chaoti-
cally, as shown in Fig. 2(c). It should be noted that
the fluctuations in Fig. 2(c) are much larger than the
noise present in the detection equipment and should
actually be interpreted as chaotic intensity fluctua-
tions. The SOP measured is very close to the pre-
dicted values, s, =1 while s, ;= 0. The degree of
polarization (DOP), given in Fig. 2(b) is close to its
maximum value of 100%, as one would expect for
light that has passed through a polarizer.

Fig. 3 shows results of a similar experiment. In
this example, the polarizer in the calibration area has
been removed. Thus, the actual SOP for the chaotic
light from the EDFRL is being displayed in Fig. 3.
Fig. 3(b) shows that the DOP is much lower than for
the case where the light passed through the polarizer
(Fig. 2). This suggests that the light from the EDFRL
is making large polarization fluctuations at rates that
are faster than the 125 MHz bandwidth of the photo-

diodes. Fig. 3(a) clearly shows that the polarization
output from the EDFRL changes rapidly with time,
but is localized around a certain area on the Poincaré
sphere. Fig. 3(d-f) show the fluctuations in the
normalized Stokes parameters.

For certain settings of the polarization controlier '

in the ring, the EDFRL used in this experiment also
possesses a mode of operation in which self-pulsing
of the intensity is observed. The SOP measurement
technique described in this paper is able to discern
features of this self-pulsing behavior that could not
otherwise be observed. Fig. 4 shows data from an
experiment in which the EDFRL was self-pulsing.
The total intensity time series is shown in Fig. 4(c)
showing self-pulsing with a repetition rate equal to
one round trip in the ring laser. As can be seen in
Fig. 4(a), the measured SOP of the light alternates
between two areas on the Poincaré sphere. The two
areas are located on opposite sides of the Poincaré
sphere, indicating that they represent roughly orthog-
onal SOPs. From Fig. 4(d-f), it is clear that one of
these areas corresponds to the SOP of light during a
pulse, while the other area corresponds to the SOP of
light between the pulses. Fig. 4(b) shows that the
light during the pulses has a higher degree of polar-
ization than the light measured during the interval
between pulses. Such information could not have
been obtained by simply observing the intensity of
two orthogonal polarizations of light, as is often
done by using a polarizing beam-splitter. The infor-
mation about the DOP could lead to a new insight
about the dynamics that give rise to such self-pulsing
in ring lasers.

Fig. 5 shows another measurement of light from
the EDFRL. The total intensity of the light from the
EDFRL, shown in Fig. 5(c), displays an irregular
self-pulsing. In Fig. 4, the SOP of the light seemed
to be localized around two areas. In Fig. 5(a), the
SOP is also evolving between two localized areas,
but unlike the data shown in Fig. 4, these areas are
not orthogonal to one another. Consequently, the
polarization dynamics shown in Fig. 5 could not

Fig. 5. Light produced by an EDFRL is analyzed. (f) Shows the time-evolution of s, which is clearly different from the evolution of s,
shown in (d,¢). Again, the DOP shown in (b) seems to increase during the pulses and be lower during the interval between them, though the
difference is not so pronounced as in Fig. 4(b). The SOP shown in (a) seems to be evolving between two non-orthogonal states—such an
observation could not be made by examining the orthogonal polarizations output from a simple polarizing beam-splitter.
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have been obtained using a polarizing beam-splitter
to analyze two orthogonal polarization of the light
from the EDFRL. Interestingly, each time series in
Fig. 5(d-f) displays behavior that is different than
from the others.

Fig. 6 shows a case in which the total intensity of
the light, shown in Fig. 6(c), has relatively small
intensity fluctuations, but the polarization state of the
light is switching rapidly between approximately or-
thogonal polarization states. In such a case, a simple
intensity measurement provides little insight into the
laser dynamics; much more insight can be obtained
by analyzing the polarization dynamics.

4. Conclusion

A high-speed polarization analyzer was developed
to measure rapidly fluctuating polarization states of
lightwaves. The high-speed of the measurements was
required in order to more accurately measure the full
polarization dynamics of lightwaves whose polariza-
tion states fluctuate on fast (several nanoseconds)
time-scales. The technique was enabled by a four-
channe! digital sampling oscilloscope recording the
intensity information from four photodiodes @125
MHz, 3-dB bandwidth) simultaneously at 500 MS/s
for each channel. In some ways, the use of fiber
optics simplified the usage of the apparatus. Beam
alignment and beam shaping difficulties were elimi-
nated. On the other hand, the birefringence of the
optical fibers and its sensitivity to perturbations meant
that the system must be calibrated (as described in
Appendix A) before each set of experiments.

As indicated by the experiments performed using
an EDFRL source, a measurement of the full polar-
ization dynamics can often reveal important and
otherwise hidden insight into an optical system. Fig.
3 showed that the polarization of the light from the
EDFRL evolved rapidly in time. Fig. 4 showed that
the DOP of the self-pulsing light was higher during
the pulses than during the interval between the pulses,
a phenomenon that had not been observed before.

The non-orthogonal switching of the SOP shown in
Fig. 5 could not have been observed by measuring
two orthogonal polarizations, as is often done with
polarizing beam splitters. Fig. 6, with its relatively
constant intensity, is an example of a situation in
which high-speed measurements of the SOP can
provide much more insight into the dynamics of the
system than a simple intensity measurement.
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Appendix A. Calibration and measurement of the
stokes parameters

As shown in Fig. 1, light that is to be analyzed
propagates from its source to the polarization ana-
lyzer via single-mode optical fiber. Light is coupled
out of the fiber by a GRIN lens and passes through
the calibration area before being coupled back into.
the fiber by yet another GRIN lens. During the
calibration procedure, a polarizer or A/4 waveplate
are used in the calibration area, but for an actual
SOP measurement, this area is empty. After passing
through the calibration area, the light is divided at
the first coupler, and approximately 10% of the light
is directed toward the photodiode that measures the
intensity, I,. The remaining 90% of the light contin-
ues propagating to the 1 X 3 coupler where it is split
into thirds. The light in all of these branches is again
coupled out of the fiber to be operated on by the
free-space optical elements shown in the figure—a

Fig. 6. Light produced by an EDFRL is shown to have roughly orthogonal polarization switching (a), while at the same time, the intensity of
the light {c) gives little indication of the large SOP switching. The DOP in (b) does not exhibit the same large changes as in Figs. 4 and 5.
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polarization controller, a polarizer, and a variable
attenuator. As in the calibration area, a second GRIN
lens couples the free-space light back into the fiber
to guide it to a photodiode. An accurate measure-
ment of the SOP of a lightwave requires that the
lengths of fiber in each path be properly matched.
Experimentally, the precision with which the lengths
are matched is +2 cm.

VATs are used in the experiment to prevent satu-
ration of the photodiodes. The attenuation is accom-

plished by placing an anti-reflection coated glass )

plate between the two GRIN lenses. Refraction in the
glass plate for orientations other than perpendicular
to the beam results in a lateral translation of the
beam. The lateral translation affects the coupling
efficiency of the light back into the fiber (through
the GRIN lens). Thus, the variable attenuation is
controlled by adjusting the orientation of the glass
plate.

In addition to this attenuation, the free-space
beams propagating toward the photodiodes measur-
ing I,, I, and I; must also pass through a polariza-
tion controller and a polarizer. The polarization con-
troller consists of three waveplates, A/4, A/2 and
A/4, respectively. With proper adjustment of their
orientations, these three waveplates are able to trans-
form light of any SOP to any other SOP that is
desired. Immediately after the waveplates, the light
passes through a polarizer. The photodiode that fol-
lows it is only able to measure the component of the
light that passes through the polarizer.

Finally, the detection equipment consists of the
four photodiodes and the DSO. The photodiodes
used in this experiment have a 3-dB bandwidth of
125 MHz, but higher frequencies can be observed.
These photodiodes are the components that limit the
speed at which polarization fluctuations can be ob-
served in this experiment. The intensity measured by
a photodiode is recorded at a rate of 500 MS/s by
one of the four channels of a digital sampling
oscilloscope.

In order to find the SOP of a lightwave using this
polarization analyzer, a relationship between the four
intensities, I, I,, I, and I,, and the four Stokes
parameters must be determined. An example of how
such a relationship can be obtained is provided in
Ref. [1] for a free-space, rather than fiber-optic,
system. In the example given in Ref. [1], the follow-

ing equation relates the intensities to Stokes parame-
ters:

) 11 o0 o o]fb
sZ _l 0 2 0 Iz
5] L-1 0 0 2]y

Optical fiber, as used in the experiment presented

. here, possesses random birefringences that causes the

polarization of a lightwave to evolve in ‘an unpre-
dictable manner as it propagates. Consequently, the
transfer matrix that relates the Stokes parameters to
the measured intensities cannot be known prior to
calibration. Though the matrix is unknown before
calibration, there must exist some transfer matrix for
relating the measured values of I, I,, 1,, and I to
the Stokes parameters.

The elements of the appropriate transfer matrix
can be obtained through a calibration procedure. By
placing appropriate optical elements in the calibra-
tion area, the Stokes parameters of the light as it is
coupled back into the fiber can be completely de-
fined. Measuring the values I, I;, I, and I; when
the SOP is defined enables a determination of the

elements of an inverse transfer matrix. The new

calibration equation takes the form (using the nor-
malized Stokes parameters),

a, b‘ (4 dl So lo

a b, ¢ dyfis|_|h )
a; by ¢ difls, L

a, by ¢, dif\5 L

where the normalized Stokes vectors have been used.
Sending continuous-wave (CW) unpolarized light,

5= (1,0,0,0), into the apparatus reduces Eq. (7) to

the following equations, which allow the determina-

tion of the a elements:

a;=1I,

a,=1I,

a;=1, (8)
a = 13 .
However, no source of completely unpolarized

light was conveniently available during the experi-
ments described in this paper. An alternative method
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was used to obtain the values of the a elements.
Light from the tunable diode laser having the same
wavelength as light from the EDFRL is passed
through a polarizer in the calibration area and then
coupled back into the fiber. The polarization con-
trollers in the paths leading to the photodiodes that
measure I, I,, and I, are oriented to ensure maxi-
" mum transmission through the polarizers. Values for
1,, I,, and I, are measured, as is a value for I, If
this light had been completely unpolarized, only half
of the measured intensity would have been transmit-
ted through the polarizers in front of 1, I, and I,
so the a’s are determined by

a,=1I,,
a,=1/2,

a3=12/2, (9)
a,=1/2.

The next step in the calibration process is to
create linearly polarized light along the x-axis in the
calibration area and couple it back into the fiber. To
do so, a polarizer with an extinction ratio > 45 dB is
used. It is placed in an optical mount capable of 0.5°
precision. The Stokes vector for such a light source
linearly polarized along the x-axis is 5= (1,1,0,0).
Multiplying this by the matrix above allows the
determination of the b elements in the following
way:

by=l—a,
by,=1 —a,,
by=I—a,, (10)
by=1,-a,.

Since the a values have already been determined,
the determination of the b’s is straightforward. Sub-
sequently, linearly polarized light at 45° 5=
(1,0,1,0), is sent to the photodiodes to determine the
values of the ¢ elements. Determining the d values
requires circularly polarized light, 5'= (1,00,1)—a
somewhat more difficult task to create.

The most direct method in this experiment to
create circularly polarized light is to pass linearly
polarized light at an orientation that is half-way
between the fast and slow axes of a quarter-wave-
plate. While the laboratory possessed a quarter-

wave-plate, the orientation of its principal axes had
to be empirically determined. First, the polarization
controller immediately after the TDL and a polarizer
in the calibration area are jointly aligned for maxi-
mum extinction of the light from the TDL-light from
the TDL is completely polarized, i.e., DOP = 100%.
Maximum extinction implies that the light coupled
from the fiber and into free space in the calibration
area is linearly polarized orthogonal to the polarizer.
After maximum extinction is obtained, a quarter-
wave plate is placed in front of the polarizer in the
calibration area. With this configuration, total extinc-
tion will occur if one of the optic axes of the
quarter-wave plate is aligned with the polarizer.
Maximum transmission (in this configuration) occurs
when the axes are oriented at 45° relative to the
linearly polarized light incident on the quarter-
wave-plate. With this orientation of the axes, circu-
larly polarized light is output from the quarter-wave
plate. After the polarizer is removed, circularly po-
larized light passes to the GRIN lens where it is
coupled back into the fiber. Thus, light represented
by the Stokes parameters 5=(1,0,0,1) is generated,
thereby permitiing the determination of the d ele-
ments of the matrix.

With the elements of the matrix now determined,
it is possible to determine the Stokes parameters of
the lightwave in the calibration area from any set of
intensity values, Iy, I;, I,, and I. All that is re-
quired is to invert the matrix in Eq. (7) and multiply
by the intensity vector. To minimize the effect of
experimental errors, it is important that the matrix to
be inverted not be ill-conditioned. The polarization
controllers in front of the photodiodes measuring I;,
1,, and I, were therefore adjusted prior to calibration
so that the matrix elements obtained are roughly
similar to those obtained by inverting the matrix in
Eq. (6), but scaled by a factor of S, due to the use of
the normalized Stokes parameters.

After these procedures have been followed, the
optical elements are removed from calibration area.
A light source to be analyzed is connected to the
apparatus, and the oscilloscope records the values of
Iy, I, 1,, and I; as they fluctuate in time. These
vectors are then multiplied by the transfer matrix

~ obtained with the procedure given above to find the

Stokes parameters of the light source as a function of
time. :
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